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7.8 The object of this problem is to verify that Equation (7.59) is the solution to Equa-
tions (7.56) — (7.58).

(a) Integrate Equations (7.56) once and impose the freestream boundary conditien
[Equation (7.58)].

(b) Observing that 0 = ¢* = 1/2 for Saffiman’s model, combine the k£ and o?

equations to show that
dk k

i~ w?
Solve this equation subject to the boundary conditions.

(¢c) Introduce the dimensionless variables

= 2
VA TCE) BN CY
v Kv

and substitute the solution for k into the equation for w. Set any arbitrary constant
of integration equal to zero, and verify the solution for § — .

(d) Letting U = U/|V|, rewrite the momentum equation. Using the dimensionless
equation for @ derived in Part (c), verify that

(1+a)gg_{?—{?e
24w/ do = @
and verify the solution for U, — U.

7.9 This problem illustrates how nonlinear terms affect numerical stability for parabolic
marching methods. Consider the following limiting form of the k-w mode].

Ow U \* 2
U% = (8—y) — Bow

We wish to analyze the stability of the solution to this equation under the following
discretization approximations.

ow . U i
U@ = ﬂ [3wm+1 = 4(-0771 +0Jm_1]
( ay)z . a(dU/ay)?
e\ amr ) =TT Wma
v Womt1

50‘-02 =(1+ ".l’w)ﬁow:n_ilﬁ-’:#r-l - "f’wﬁo(wi;i1 2

(a) Assuming that w},, is the sum of the exact solution to the discretized equation,
Wm+1, and an error term, dw’, viz.,

uJ:n_,_l = Wm+1 + 6&}1"
linearize the discretized equation for w and verify that

Sw? _ (o — 1).3owr2n+1 = O:(BU/(?y)z
8wi=1 " BUwmi1/Az — a(0U/8y)? + (Yu + 1)Bowl,,,
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(b) Using the fact that w41 satisfies the exact discretized equation, simplify the
denominator and show that

Sw’ _ (tho — 1) — a(@U/By)z/(ﬁowfn+1)
Swi=1 7 Yy + U(dwm — wm-1)/(Bow?, 11 AT)

(c) Assuming the term proportional to U is negligible, determine the condition that
1, must satisfy in order to insure that |w®/dw’ !} < 1.

7.10 Using von Neumann stability analysis, determine GG and any condition required for
stability of the following finite-difference schemes. Assume UV > 0, v > Q0 and § < 0.

(a) Euler’s method:
kP = g UAt (k3H — kot

ZA i+1
(b) Richardson’s method:
= i 2uAt n n
R i (Az)? (kje1 — 27 + k1)

(c) Crank and Nicolson’s method:

- n UAt n n d n n
KHh = k7 — e (RJEL + Kf — K72 - k) + S&t(k kT
7.11 Using von Neumann stability analysis, determine GG and any condition required for
stability of the following first-order accurate scheme applied to the inviscid Burgers’
equation, us + Uug = O:

nt+l __  n UAt n-1 n

A TN (uj+1 —-uj_l), U=>0

7.12 Consider the following one-dimensional wave equation with source and diffusion

terms. dk. 8‘]{; dz
=t k
5 Vg~ tvas

where U > 0, v > 0 and & can be either positive or negative,

(a) Cast this equation in finite-difference form using Crank-Nicolson differencing and
the following approximation for the source term.

Sk =8 [yki + A -9k, 0<y<1

(b) Using von Neumann stability analysis, determine G and any condition required
for stability of this finite-difference scheme. How do your results compare to the
analysis of Equation (7.93) in Section 7.4?

7.13 Using von Neumann stability analysis, determine (¢ and any condition required for
stability of Lax’s method applied to the inviscid Burgers’ equation, u; + U, = 0:

u;‘+1_l(3+1+u3 1) U’H_u?l:[} Feo
At 2Ax ’
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7.14 Verify that the dependent-variable and inviscid-flux vectors in Equation (7.117) can
be written as

@1 Q2

Q2 (331)Q3/Qx + (v~ 1)Qs — (v~ 1)Qa
Q=9 Q3 o, F=4 7Q2Q3/Q1 — (F)Q3/Q% — (v — 1)Q2Q4/Qs

Q4 Q2Q4/Ql

Qs Q2Q5/h

and show that the flux-Jacobian matrix is given by Equation (7.121).

7.15 Suppose a finite-difference method is only first-order accurate. When this is true,
Richardson’s estimate of the error must be revised. Assuming

Fr = €1h+62h2 + -
propose an altemnative to Equation (7.138).

7.16 The following table represents partial results for one-dimensional finite-difference
computations using a second-order accurate, time-marching method. The computations
have been done on grids with 50, 100 and 200 points. Use Richardson extrapolation to
estimate the discretization error at each point for the two finest grids. Based on your
results, make a table of the results below and add a column with your best estimate of
the continuum solution (grid-point spacing — 0) to the differential equation.

[ J $s0 |5 b0 | J a0 B
I 05592 11 0.5628 1 05607
2 05700 | 3 05740 5 05726
3 05737 | 5 05748 9 0.5745
4 05615 |7 05557 13 0.5573

7.17 The following table represents partial results for one-dimensional finite-difference
computations using a second-order accurate, time-marching method. The computations
have been done on grids with 50, 100 and 200 points. Use Richardson extrapolation to
estimate the discretization error at each point for the two finest grids. Based on your
results, make a table of the results below and add a column with your best estimate of
the continuum solution (grid-point spacing — 0) to the differential equation.

| J ds0 | J  ¢100 | 7 ano ]
1 3.00361 [ I 296624 1 295443
2 307446 | 3 3.06157 5  3.05965
3 3.09224 | 5 3.06523 9 3.07557
4 354523 | 7 3.53756 | 13 3.52365
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7.18 The object of this problem is to verify that Program WAKE (see Appendix C) is
second-order accurate and to compute the grid-convergence index (GCIT).

(a) Select default conditions in Program WAKE_DATA to clear any previous applica-
tions. Then, run computations with N = 101, 151 and 201 grid points. Record the
5-significant-digit spreading rate, &, from the printed output for each computation.

(b) Use Richardson extrapolation for the 101- and 201-point computations to infer 85,
the “exact” value of &’.

(c) Define the error, £ = 8’ — &, for the three computations. Make a log-log plot of
En versus h = 1/(N — 1) and confirm that the order of accuracy of the nurmerical
method implemented in WAKE is p = 2.

(d) Compute the GCT (expressed as a percent) for the 151- and 201 -point grids with
the 101-point grid results as the basis in both cases.

7.19 The object of this problem is to verify that Program SUBLAY (see Appendix C) is
second-order accurate and to compute the grid-convergence index (GCT).

(a) Select default conditions in Program SUBLAY _DATA to clear any previous appli-
cations. Then, run computations with N = 101, 151, 201, 301 and 401 grid points.
Each time you change N, set the value of 3™ at the point nearest the surface to
y4 = 10/(N — 1). Record the 6-significant-digit constant in the law of the wall,
C, from the printed output for each computation.

{b) Use Richardson extrapolation for the 201- and 401-point computations to infer
Cs, the “exact” value of C.

(¢) Define the error, Fn = C' — C« for the five computations. Make a log-log plot
of En versus y5 and confirm that the order of accuracy of the numerical method
implemented in SUBLAY is p = 2.

(d) Compute the GCT (expressed as a percent) for the 151- through 401-point grids
with the next smallest grid results as the basis in all cases.

7.20 The object of this problem is to verify that Program EDDYBL (see Appendix C) is
second-order accurate and to compute the grid-convergence index (GC'T).

(a) Use Program EDDYBL _DATA and the input data supplied on the companion CD
for Fiow 1400. Run computations with NV = 101, 151 and 201 grid points. Each
time you change N, you must select the proper “Geometric Progression Ratio,”
kg, to adjust grid-cell spacing. Use k, = 1.07, 1.046 and 1.0345 for N = 101,
151 and 201, respectively. Record the 6-significant-digit skin friction, cy., from
the “long™ printed output for each computation.

(b) Use Richardson extrapolation for the 101- and 201-point computations to infer
¢ jo, the “exact” value of cye.

(c) Define the error, En = cfe — oo for the three computations. Make a log-log
plot of Ep versus y3 = 27/(N — 1) and confirm that the order of accuracy of the
numerical method implemented in EDDYBL is p = 2.

(d) Compute the GCT (expressed as a percent) for the 151~ and 201-point grids with
the 101-point grid results as the basis in both cases.



Chapter 8

New Horizons

The focus of the previous chapters has been on approximate, Reynolds-averaged,
models for use in general engineering applications. Throughout this text, we have
stressed the virtue of using the minimum amount of complexity while capturing
the essence of the relevant physics. This is the same notion that G. 1. Taylor
described as the “simple model/simple experiment” approach.

Nevertheless, no pretense has been made that any of the models devised in this
spirit applies to all turbulent flows: such a “universal” model probably doesn’t
exist. We must always proceed with some degree of caution since there is no
guarantee that Reynolds-averaged models are accurate beyond their established
data base. Thus, while simplicity has its virtues for many practical engineering
applications, there is a danger that must not be overlooked. Specifically, as
quipped by H. L. Mencken...

“There is always an easy solution to every human problem — neat,
plausible and wrong.”

This chapter discusses modern efforts that more directly address the physics of
turbulence without introducing Reynolds-averaged closure approximations. We
begin by discussing Direct Numerical Simulation (DNS) in which the exact
Navier-Stokes and continuity equations are solved, though currently at relatively
low Reynolds numbers because of the limitations of present-day computers. We
then tam to Large Eddy Simulation (LES) in which the largest eddies are com-
puted exactly and the smallest, “subgrid-scale” (SGS) eddies are modeled, hope-
fully with a less critical impact on the simulation than in Reynolds-stress model-
ing. Next, we address the recently developed Detached Eddy Simulation (DES)
method that computes the very largest eddies from first principles and uses a
conventional Reynolds-averaged model for the “smaller eddies.” In comparison
to the LES mcthod, the smaller eddies are much larger than the SGS cell size.

427
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Finally, we discuss current efforts in chaos studies, and their possible relevance
to turbulence.

8.1 Background Information

Before plunging into these topics, it is worthwhile to pause and review the key
aspects of turbulence that we discussed in Chapters 1 and 2. It may even be
helpful for the unhurried reader to revisit Sections 1.3 and 2.5 before proceed-
ing. Note that in pursuing a more fundamental approach to turbulence in DNS,
LES and DES studies, we still have a need to understand important aspects
of turbulence such as the roles played by the largest and smallest eddies and
the cascade process. The reason for this need changes however. In developing
a turbulence model, we are trying to mimic the physics in our mathematical
formulation. As our understanding of turbulent-flow physics improves, so the
quality of our approximations improves (assuming we make intelligent use of the
improved understanding). Even in DNS we need some knowledge of turbulence
physics to check for the physical soundness of the numerical results, for exam-
ple, to be certain that inadequate resolution or even programming errors are not
causing spurious results. The same applies to LES and DES. Note, for example,
that formulating SGS models requires at least as detailed an understanding of
turbulence physics as Reynolds-averaged models.

The first important point we must consider in DNS, LES and DES is that
of the smallest scales of turbulence. Our primary focus in devising Reynolds-
averaged closure approximations has been on the dynamics of the largest eddies,
which account for most of the transport of properties in a turbulent flow. Our
use of dimensional analysis, in which molecular viscosity has been ignored,
guarantees that the closure approximations involve length scales typical of the
energy-bearing eddies whose Reynolds number — however defined — is much
larger than unity except close to a solid surface, i.e. in the viscous sublayer,
y+ < 3, say. This is the rcason that viscous-damping functions are often needed
close to a solid boundary where the dissipating eddies dominate, and even the
energy-bearing eddies have Reynolds numbers of order unity. DNS is supposed
to resolve the whole range of eddy sizes, while in LES and DES we try to resolve
all the important (larger) eddies so that the SGS model for the small eddies does
not have a critical influence on the overall results. In all three cases we need to
know the typical scales of the smallest eddies.

As shown in Subsection 1.3.3, the smallest scales of turbulence are the Kol-
mogorov scales of length, time and velocity, viz.,

n= (*’B/E)IMJ T = (r//e)l/2 , U= (ue)l/‘1 (8.1)

where v is kinematic viscosity and ¢ is dissipation rate. Note that the Reynolds
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number vr/v is equal to unity, which is plausible in view of the basic definition
of Reynolds number as a ratio of inertial forces to viscous forces. Necessarily,
inertial and viscous effects just balance in the smallest eddies (this is merely
an order-of-magnitude argument, and vn/v comes out as exactly unity simply
because the above definitions contain no numerical factors). To relate the Kol-
mogorov length scale to the length scale we have been dealing with in standard
turbulence models, consider the following. By hypothesis, we have been using
the length scale appropriate to the energy-bearing eddies, #. This length scale is
often chosen as the integral length scale in statistical turbulence theory, and is
related to € by Equation (4.10), so that [see Equation (1.6)]

% ~ Rez3/* (8.2)

where Re, = k'/2£/v is the usual turbulence Reynolds number. Since values of
Re in excess of 104 are typical of fully-developed turbulent boundary layers and
¢ ~ 0.1§ where 0 is boundary-layer thickness, the Kolmogorov length scale, 7,
outside the viscous wall region is less than one ten-thousandth times the thickness
of the boundary layer.

DNS, LES and DES studies also make use of another length scale from the
statistical theory of turbulence, the Taylor microscale, )\ [c¢.f., Tennekes and
Lumley (1983) or Hinze (1975)]. The basic definition is

) w'?
AN (8.3)
(Ou' /z)*

For locally isotropic turbulence (i.e. turbulence in which the small scales are
statistically isotropic even if the large ones are not, which is usually the case at
high Reynolds numbers), the exact expression for dissipation rate, ¢, leads to

S’ 2 272
€= 151/(81;) = 151/1;—2 (8.4)

Other definitions of A can be constructed by using different velocity components
and gradients in the basic definition, but in locally-isotropic turbulence they are
simply related. Using Equation (4.10), and assuming k ~ u’%, we conclude that

A =
Z~Rer? or A~ (¢n?)1/3 (8.5)

Thus, in general we can say that for high-Reynolds-number turbulence there is
a distinct scparation of these scales, i.e.,

n<AN<L L (8.6)
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Now the basic definition shows that A\ is a composite quantity, depending on
properties of the large-scale eddies as well as the small ones. Unlike ¢ and
7, it cannot be identified with any meaningful range of eddy sizes. However,
results of numerical simulations are often characterized in terms of the microscale
Reynolds number, Ee),, defined by

Rey = kY2 /v (8.7
Substitution for A from Equation (8.4) leads to
Rey ~ (k2L /v)'/? (8.8)

where L, = k3/%/e is the “dissipation length scale”, actually the typical length
scale of the stress-bearing motion used implicitly in all two-equation models.
Now, L. is of the same order as ¢ so it follows from Equation (8.8) that also

Rey ~ Rey'/? (8.9)

Thus although M is not a very meaningful length scale, Re) is an alternative to
the Reynolds number of the energy-containing eddies. Finally, the eddy turnover
time, Tiyrnover, 1S simply the ratio of the macroscales for length, £ or L., and
velocity, k'/2, and is given by

Tturnover ™ e/kl/z g Le/’kl/Q (8-10)

The eddy turnover time is a measure of the time it takes an eddy to interact with
its surroundings. As can be seen from the definition of L. it is also the reciprocal
of the specific dissipation rate, w ~ ¢/k.

A second important consideration is the spectral representation of turbulence
properties (see Subsection 1.3.4), which replaces the vague idea of “eddy size.” If
« denotes wavenumber, defined as 27 /wavelength, and E(x)dx is the turbulence
kinetic energy contained between wavenumbers « and x + dk, we can write

o0

Lo | Blede (8.11)
2 0

Recall that k is half the trace of the autocorrelation tensor, R ;;, defined in Equa-
tion (2.43), at zero time delay. Correspondingly, the energy spectral density
or energy spectrum function, E(x), is related to the Fourier transform of half
the trace of R;;. In general, we regard a spectral representation as a decom-
position into wavenumbers (). In loose discussions of “eddy size,” we regard
the reciprocal of x as the eddy size associated with . Small & equals large
wavelength equals large eddies, and conversely. Of course turbulence is not @
superposition of simple waves; any definition of an “eddy” based on observed
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Figure 8.1: Energy spectrum for a turbulent flow — log-log scales.

flow patterns will actually cover a range of wavenumbers, and is still vague.
However the definition of spectral density and the associated analysis are pre-
cise. The present discussion is simplified: see Tennekes and Lumley (1983) for
a detailed discussion of energy spectra.

Again using dimensional analysis, Section 1.3.4 shows that, for wavenumbers
small enough that viscosity does not affect the motion, but large enough that the
overall dimensions of the flow such as boundary-layer thickness do not matter,

: 1 '
E(k) = Cge/3573/3, 7 <K< % (8.12)

where CY is the Kolmogorov constant. This is the famous Kolmogorov —5/3
law that characterizes the inertial subrange. Figure 8.1 shows a typical energy
spectrum for a turbulent flow. With these preliminary remarks in hand, we are
now in a position to discuss DNS, LES and DES in the next three sections.

8.2 Direct Numerical Simulation

A direct numerical simulation, or DNS for short, means a complete three-
dimensional and time-dependent solution of the Navier-Stokes and continuity
equations. The value of such simulations is obvious: they are, in principle,
numerically-accurate solutions of exact equations of motion and — in principle
— the proper solution to the turbulence problem. From a practical standpoint,
statistics computed from DNS results can be used to test proposed closure ap-
proximations in engineering models. At the most fundamental level, DNS can
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be used to obtain understanding of turbulence structure and processes that can
be of value in developing turbulence-control methods (e.g., drag reduction) or
prediction methods. DNS can also be viewed as an additional source of exper-
imental data, taken with unobtrusive measuring techniques. This is especially
useful for obtaining information about essentially-unmeasurable properties like
pressure fluctuations.

All of these comments assume the DNS is free of significant numerical, and
other, forms of error. This is a nontrivial consideration, and the primary concerns
in DNS are related to numerical accuracy, specification of boundary and initial
conditions, and making optimum use of available computer resources. In this
section, we discuss these issues only briefly. For more detail at an introductory
level, with extensive references to recent research work, see the review article by
Moin and Mahesh (1998). As a final reminder, remember that even the numerical
solution of the exact equations of motion requires detailed understanding of the
physics of turbulence if the solutions are to be economical and accurate.

Estimating the number of grid points and timesteps needed to perform an
accurate DNS reveals the complexity of the problem from a computational point
of view. As an example, consider incompressible turbulent flow in a channel of
height H. The computational domain must be of sufficient extent to accommo-
date the largest turbulence scales. In channel flow, eddies are elongated in the
direction parallel to the channel walls, and their length A is known to be about
2H. Also, in principle, the grid must be fine enough to resolve the smallest
eddies whose size is of the erder of the Kolmogorov length scale, 1. Assuming
that at least 4 grid points in each direction are needed to resolve an eddy (since
we need adequate resolution of derivatives), we estimate that the total number of
grid points for uniform spacing, Nyniform, is

AT T 1/4]3
Nuniform = |4=] = |8H (S (8.13)
n U3 ;

Now, in channel flow, the average dissipation is € =~ 2u2U,,/H where U, is
the average velocity across the channel, and U,, /u, =~ 20. Substituting these
estimates into Equation (8.13), we arrive at

urH/2

v

Nu,niform, =z (110881—)9’{41 Re.r ==

(8.14)

In practice, it is wasteful to use uniformly-spaced grid points since there are
regions where e is small and the Kolmogorov length scale is much larger than
it is near the surface where ¢ is largest. By using stretched grids to concentrate
points where the smallest eddies reside, experience [Moser and Moin (1984),
Kim, Moin and Moser (1987)] shows that the factor of 110 in Equation (8.14)
can be replaced by about 3. Thus, the actual number of grid points typically
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used in a DNS of channel flow, Npye, is
Nows =~ (3Re,)%* (8.15)

Similarly, the timestep in the computation, A¢, should be of the same order as
the Kolmogorov time scale, 7 = (v/€)'/2. Based on results of the computations
done by Kim, Moin and Moser (1987), the timestep must be

0.003 H
At —
RBT Ur

(8.16)

To appreciate how prohibitive these constraints are, consider the channel-flow
experiments done by Laufer (1951) at Reynolds numbers of 1.23 - 104, 3.08 - 104
and 6.16- 10* and the experiment of Comte-Bellot (1963) at a Reynolds number
of 2.3 - 10°. Table 8.1 lists the number of grid points and timesteps required to
perform a DNS, assuming the time required to reach a statistically-steady state
is 100H/U,, ~ 5H /u,. Clearly, computer memory limitations make all but the
lowest Reynolds numbers considered by Laufer impractical with the computers
of the early 21°* century. The development of massively-parallel machines over
the last decade has reduced execution times, but storage is still a problem, both
during the computation and for later archiving of “fields” of raw data at selected
timesteps.

Table 8.1: Grid Point/Timestep Requirements for Channel-Flow DNS and LES.

|__Rew [ Rer [ Npns | DNS Timesteps | Nigs |

[1.23- 107 360 | 6.7 -10% 32000 6.1.-10°
3.08- 104 800 | 4.0-107 47000 3.0-10%
6.16 - 104 1450 | 1.5-108 63000 1.0-107
2.30- 105 {| 4650 | 2.1-109 114000 1.0-108

The computations of Kim, Moin and Moser (1987) provide an example of
the computer resources required for DNS of the geometrically simple case of
channel flow. To demonstrate grid convergence of their methods, they compute
channel flow with Re, = 180, corresponding to Rey ~ 6000 using grids with
2 -10° and 4 - 10° points. For the finer grid, the CPU time on a Cray X/MP
supercomputer was 40 seconds per timestep. The calculation was run for a total
time 5H/u,, and required 250 CPU hours. The same computation would take
about 100 CPU hours on a 3-GHz Pentium-D personal computer (see problems
section),

Both second-order accurate and fourth-order accurate numerical algorithms
have been used in DNS research to advance the solution in time. There are two
primary concerns regarding numerical treatment of the spatial directions. The
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first is achieving accurate representations of derivatives, especially at the smallest
scales (or, equivalently, the highest wavenumbers). Spectral methods — Fourier
series in the spatial directions — can be used to insure accurate computation
of derivatives. Finite-difference methods usually underestimate derivatives of a
given velocity field, leading to inaccuracies in the smallest (dissipating) scales.
The dissipation as such is set by the rate of energy transfer from the larger
eddies, so the underestimated derivatives are compensated by an excess in spectral
density at the highest wavenumbers to achieve the right value for the dissipation
as expressed by the right-hand side of Equation (4.6). This is usually just called
“numerical dissipation,” but is in no sense an addition to the dissipation rate set
by the energy transfer.

Thus, the first concern in demonstrating grid convergence of a DNS is to
verify that the energy spectrum, E(«x), displays a rapid decay, often referred to
as the rolloff, near the Kolmogorov length scale, n. The second concemn is to
avoid a phenomenon known as aliasing. This occurs when nonlinear interactions
among the resolved wavenumbers produce waves with wavenumbers greater than
Kmaz, Which can be misinterpreted numerically. If special precautions are not
taken, this can result in a spurious transfer of encrgy to small wavenumbers
[Ferziger (1976)].

While spectral methods are more accurate for computing derivatives at the
smallest scales, they are difficult to use with arbitrarily nonuniform grids. Be-
cause of the wish to extend DNS and LES to more realistic geometries, bringing
the need for more complicated grids, there has been a general swing towards
finite-difference methods, but a higher order of accuracy is needed than for spec-
tral methods. Unstructured grids, now well established in conventional CFD
[e.g., Venkatakrishnan (1996)], are being introduced into DNS and LES for
complicated geometries, but they carry a further penalty in storage and CPU
time.

In their grid-convergence study, Kim, Moin and Moser (1987) show that
their energy spectra display the characteristic rolloff approaching wavenumber
k /= 1/m where n is the Kolmogorov length scale. This corresponds to a wave-
length of 27mn ~ 61, roughly the top of the dissipating range.

The primary difficulty with boundary conditions in any Navier-Stokes calcu-
lation, DNS, LES, DES or Reynolds-averaged, is at open boundaries. Because of
the elliptic nature of the problem, the flow at such boundaries depends on the un-
known flow outside the computational domain. In LES and DNS this problem is
circumvented by imposing periodic boundary conditions for directions in which
the flow is statistically homogeneous (e.g., the streamwise and spanwise direc-
tions in channel flow). Most simulations done to date have been homogeneous or
periodic in at least one spatial direction, which has the additional advantage that
statistics can be obtained by averaging over the homogeneous direction as well
as over time, thus reducing the time sample needed to get converged statistics.
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Flows that grow in the streamwise direction in a nearly self-similar manner
(e.g., equilibrium boundary layers) can be reduced to approximate homogeneity
by a coordinate transformation [Spalart (1986, 1988, 1989)]. Alternatives are to
use the results of a previous simulation to give the incoming flow at the upstream
boundary [Le, Moin and Kim (1997)] or use a suitably-rescaled version of the
outgoing flow at the downstream boundary [the “fringe” method of Spalart; see
Bertolotti et al. (1992)]. Finally one can add a synthetic random fluctuating
velocity ficld to a prescribed mean-velocity field. After a few eddy-tumover
times, the correct statistics evolve, but this may correspond to an unacceptably
large downstream distance.

In nonperiodic flows the downstream boundary condition is usually taken
as zero streamwise gradient of all variables. This is acceptable if the statistics
of the real flow are changing slowly in the streamwise direction, because this
implies negligible upstream influence — usually equivalent to validity of the
boundary-layer approximation, which leads to parabolic equations.

Solid boundaries, where the no-slip velocity boundary condition applies, pose
no spectial problems for DNS.

DNS resuits illustrate one of the curious features of turbulence and other
chaotic systems. Suppose we generate a solution from a given set of initial
conditions, and then repeat the computation with a very small perturbation in
the initial conditions. We find that, after a few eddy-turnover times, the second
solution, or realization, is very different from the first. However, in terms of all
statistical measures, the two flows are identical! This is the classical problem of
predictability discussed, for example, by Sandham and Kleiser (1992) (see also
Section 8.5). It is a real phenomenon and has nothing to do with numerical error.
Also, it occurs in everyday life, although usually with finite initial perturbations.

As asimple example, two strangers in a crowd, initially side by side, tend to
drift apart — that is, a small difference in initial position tends to grow indef-
initely, and the standard deviation of the difference, averaged over many trials,
certainly grows. The public recognizes this in an empirical way: if one stranger
steps on another’s foot fwice, the steppee is likely to suspect the stepper of doing
it on purpose. Thus, while somewhat disconcerting to the mathematician, this
phenomenon should come as no great surprise to the engineer.

DNS matured rapidly during the 1980°s and continues to develop as more
and more powerful computers appear. Although Reynolds numbers are usually
well below those found in most branches of engineering, recent applications for
simple geometries have been done for ever-increasing Reynolds numbers. Abe
and Kawamura (2001), for example, have done channel-flow simulations for
Rep = 2.4 -10%, which is nearly double the value achieved by Mansour, Kim
and Moin in 1988. DNS data are currently available for many flows of interest
to turbulence researchers (from the NASA Ames Research Center, for example),
and the list of applications continues to grow.
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8.3 Large Eddy Simulation

A Large Eddy Simulation, or LES for short, is a computation in which the large
eddies are computed and the smallest, subgrid-scale (SGS), eddies are modeled.
The underlying premise is that the largest eddies are directly affected by the
boundary conditions, carry most of the Reynolds stress, and must be computed.
The small-scale turbulence is weaker, contributing less to the Reynolds stresses,
and is therefore less critical. Also, it is more nearly isotropic and has nearly-
universal characteristics; it is thus more amenable to modeling. Recent reviews
are rapidly proliferating, including Ferziger (1996), Lesieur and Metais (1996),
Rodi (1997, 1998), Ghosal (1999), Jiménez and Moser (2000) and Pitsch (2006)
{focusing on combusting flows]. The comprehensive text by Sagaut and Germano
(2004) is devoted entirely to LES.

Because LES involves modeling the smallest eddies, the smallest finite-
difference cells can be much larger than the Kolmogorov length, and much larger
timesteps can be taken than are possible in a DNS. Hence, for a given comput-
ing cost, it 1s possible to achieve much higher Reynolds numbers with LES than
with DNS, or conversely to obtain a solution at a given Reynolds number more
cheaply. See Table 8.1 for a comparison of estimated DNS and LES grid point
requirements in a simple flow. An actual example, for a more complex flow,
1s comparison of calculations of the flow over a backward-facing step by DNS
[Le, Moin and Kim (1997)] and by LES [Akselvoll and Moin (1993}], both at
the low Reynolds number of 5000 based on step height. The LES required 3%
of the number of grid points needed for the DNS and the computer time was 2%
of that for the DNS: agreement with experiment was equally good.

Aside from the issue of the need to resolve the smaliest eddies, the comments
regarding DNS numerics, boundary and initial conditions in the previous section
hold for LES as well. The primary issue in accuracy remains that of computing
derivatives for the smallest scales (highest wavenumbers) resolved. The ultimate
test of grid convergence is again the requirement that excessive energy must not
accumulate in the smallest scales. The primary requircment is to get the dissi-
pation rate right; details of the dissipating eddies are unimportant in LES. DNS
nominally requires accurate simulation of the dissipating eddies, and the achieve-
ment of this in the classical channel simulation of Kim, Moin and Moser (1987)
is verified by the accuracy of the dissipation-rate budget evaluated by Mansour,
Kim and Moin (1988). However, marginally-resolved DNS often includes some
numerical dissipation. If spectral or pseudo-spectral methods are used, the same
boundary-condition difficulties hold in both DNS and LES.

A major difficulty in “Large” Eddy Simulation is that near a solid surface all
eddies are small — to the extent that the stress-bearing and dissipation ranges
of eddy size overlap. If one requires LES to resolve most of the stress-bearing
range, the grid spacing, and timestep, required by LES gradually fall towards that
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needed for full DNS as the surface is approached. This is, of course, a serious
limitation on Reynolds number for LES, and later we will discuss the ways in
which it can be avoided.

8.3.1 Filtering

To understand the primary difference between DNS and LES, we must introduce
the concept of filtering. Note first that the values of flow properties at discrete
points in a numerical simulation represent averaged values. To see this explicitly,
consider the central-difference approximation for the first derivative of a contin-
uous variable, u(x), in a grid with points spaced a distance h apart. We can
write this as follows.

u(z+h)—ulz—h) d |1 [h

This shows that the central-difference approximation can be thought of as an
operator that filters out scales smaller than the mesh size. Furthermore, the
approximation yields the derivative of an averaged value of u(x).

There are many kinds of filters that can be used. The simplest type of filter
is the voelume-average box filter implemented by Deardorff (1970), one of the
earliest LES researchers. The filter is

e+3Ar py+5Ay patiAz
w(xt)=z3 [ f / wi(€ t) dedndC  (8.18)

———.ﬁ.x: IAy

The quantity u; denotes the resolvable-scale filtered velocity. The subgrid-
scale (SGS) velocity, u;, and the filter width, A, are given by

wi=u; - and A= (AzAyAz)'/? (8.19)

Leonard (1974) defines a generalized filter as a convolution integral, viz.,

wxt) = [[[ 6o -&ayuen ae (8.20)

The filter function, (5, is normalized by requiring that

/f G(x — &A)d¢ =1 (8.21)

In terms of the filter function, the volume-average box filter as defined in Equa-
tion (8.18) is

1/A3, |z;— &) < Az, /2

Gx-&A) = { 0, otherwise (8.22)
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The Fourier transform of Equation (8.20) is i;(k,t) = G(k)U;(k,t) where U;
and G represent the Fourier transforms of u; and G. Fourier spectral methods
implicitly filter with

G(k;A)=0 for |K|> Kmaz =27/A (8.23)

As an example, Orszag et al. [see Ferziger (1976)] use the Fourier cutoff filter,
ie.,

3 .
1 sin (z; — &) /A
. I I :

G(x £1 ) A3 o (xz_ _ fq,)/A (8 24)

The Gaussian filter [Ferziger (1976)] is popular in LES research, and is defined
by

6 \** |x — £J2
G(X-e, A) = (;‘A—z) cxXp (—6 A2 ) (8.25)

- Many other filters have been proposed and used, some of which are neither
isotropic nor homogeneous. In all cases however, the filter introduces a scale A
that represents the smallest turtbulence scale allowed by the filter.

The filter provides a formal definition of the averaging process and separates
the resolvable scales from the subgrid scales. We use filtering to derive the
resolvable-scale equations. For incompressible flow, the continuity and Navier-
Stokes equations assume the following form.

o
=0 8.26
oz, (8.26)
I, o 1 Op 52w,
w— (UgUy) = —— 8.27
t s dzx; (@5) p Ox; ™ Vawkazck ( )
Now, the convective flux is given by
Ul; = U Uy + Lg',j + Cz'j -+ R,;j (8.28)
where
L = wiu; — uiu;
Cij = Tauj + Tju] (8.29)
Rz‘j B u;u:;

Note that, with the exception of the Fourier cutoff filter [Equation (8.24)], fil-
tering differs from standard averaging in one important respect:

U # U (8.30)
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i.e., a second averaging yields a different result from the first averaging. The
tensors L;;, C;; and R;; are known as the Leonard stress, cross-term stress
and the SGS Reynolds stress, respectively.

Leonard (1974) shows that the Leonard-stress term removes significant energy
from the resolvable scales. It can be computed directly and need not be modeled.
This is sometimes inconvenient, however, depending on the numerical method
used. Leonard also demonstrates that since %; is a smooth function, L;; can be
computed in terms of its Taylor-series expansion, the first term of which is

Ly~ BV @a;), = / ] E12G (&) % (8.31)

Clark et al. (1979) verify that this representation is very accurate, at low Reynolds
number, by comparing with DNS results. However, as shown by Shaanan,
Ferziger and Reynolds (1975), the Leonard stresses are of the same order as
the truncation error when a finite-difference scheme of second-order accuracy is
used, and they are thus implicitly represented.

The cross-term stress tensor, C;, also drains significant energy from the
resolvable scales. An expansion similar to Equation (8.31) can be made for
C'i;. However, most current efforts model the sum of Cy; and R;;. Clearly, the
accuracy of a LES depends critically upon the model used for these terms.

We can now rearrange Equation (8.27) into a more conventional form,! i.e.,

Y om, + 'r”] (8.32)

@+i(‘ﬁﬁ) _}_BP* % 3?1?
ot Bz, VT pdx; Oy

where
=—(Qij — 2Qrxd:;)
P =7+ 1pQxrdi; (8.33)
Qij = Ri; + Cij

At this point, the fundamental problem of Large Eddy Simulation is evi-
dent. Specifically, we must establish a satisfactory model for the SGS stresses
as represented by the tensor ;;. To emphasize the importance of achieving
an accurate SGS stress model, consider the following. In simulating the decay
of homogeneous isotropic turbulence with 16% = 4096 and 323 = 32768 grid
points, Ferziger (1976) reports that the SGS turbulence energy is 29% and 20%,
respectively, of the total. Thus, the subgrid scales constitute a significant portion
of the turbulence spectrum. The various attempts at developing a satisfactory
SGS stress model during the past half century resemble the research efforts on

IMost LES practitioners reverse the sign of 7;;. The notation chosen here is strictly for consistency
with the rest of the text
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engineering models discussed in Chapters 3 — 6. That is, models have been pos-
tulated that range from a simple gradient-diffusion model [Smagorinsky (1963)],
to a one-equation model [Lilly (1966)], to the analog of a second-order closure
model [Deardorff (1973)]. Nonlinear stress-strain rate relationships have even
been postulated [Bardina, Ferziger and Reynolds (1983)]. Only the analog of the
two-equation model appears to have been overlooked, most likely because the
filter width serves as a readily-available length scale.

8.3.2 Subgrid-Scale (SGS) Modeling

Smagorinsky (1963) was the first to postulate a model for the SGS stresses. The
model assumes the SGS stresses follow a gradient-diffusion process, similar to
molecular motion. Consequently, 7;; is given by

1 (0w, Ou;
iy = 2vrSiy, Sij = 4 >+ =2 8.34
Tij e 2 (8:1:3 + 813'%) ( )
where S;; is called the “resolved strain rate,” v, is the Smagorinsky eddy
viscosity

vr = (CsA)?/S5i;5:; (8.35)

and Cs is the Smagorinsky coefficient. Note that Equation (8.35) is akin to a
mixing-length formula with mixing length C;A. Obviously the grid scale A, or
(A Az As)!/3 if the steps in the three coordinate directions are different, is an
overall scale of the SGS motion, but assuming it to be a unique one is clearly
crude. If A were in the inertial subrange of eddy size in which Equation (8.12)
holds, and sufficiently larger than the Kolmogorov viscous length scale n that
the viscous-dependent part of the SGS motion was a small fraction of the whole,
then no other length scale would be relevant and the Smagorinsky constant would
be universal. This is rarely the case.

For all of the reasons discussed in Chapter 3, the physical assumption behind
the mixing-length tormula, that eddies behave like molecules, is simply not true.
Nevertheless, just as the mixing-length model can be calibrated for a given class
of flows, so can the Smagorinsky coefficient, C's. Its value varies from flow to
flow, and from place to place within a flow. In the early days of LES, the basic
Smagorinsky subgrid-scale model was widely used, Cs being adjusted to get the
best results for each flow [see e.g. Rogallo and Moin (1984) who quote a range
0.10 < Cs < 0.24]. In the critical near-wall region, law-of-the-wall arguments
— valid in well-behaved flows — suggest that C; should be a function of A/y
and an increasingly strong function of u,y/v as the latter decreases. However
there seems to be no record of attempts to calibrate this function: virtually all
users of the basic model keep Cy constant throughout the flow.
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There are two key reasons why the basic Smagorinsky model enjoys some
degree of success. First, the model yields sufficient diffusion and dissipation to
stabilize the numerical computations. Second, low-order statistics of the larger
eddies are usually insensitive to the SGS motions.

In an attempt to incorporate some representation of the dynamics of the
subgrid scales, Lilly (1966) postulates that

ve =CLAq (8.36)

where ¢? is the SGS kinetic energy, and ', is a closure coefficient. The subgrid-
scale stress anisotropy now depends on the sign of the resolved strain rate, rather
than on its magnitude as in the Smagorinsky formula. An equation for ¢2 can
be derived from a moment of the Navier-Stokes equation, which involves several
terms that must be modeled. This model is very similar to Prandtl’s one-equation
model (Section 4.2), both in spirit and in results obtained. As pointed out by
Schumann (1975) who used the model in his LES research, it is difficult to
conclude that any significant improvement over the Smagorinsky model can be
obtained with such a model.

Germano et al. (1991) [see also Ghosal et al. (1995), Yang and Ferziger (1993)
and Carati and Eijnden (1997) for later developments], proposed what is known
as a Dynamic SGS Model. Their formulation begins with the Smagorinsky
eddy-viscosity approximation. However, rather than fixing the value of C a
priori, they permit it to be computed as the LES proceeds. This is accomplished
by using two filters, the usual LES filter at kK = K4, and the “test filter” which
examines the resolved fluctuations between some lower wavenumber, usually
Kmaz/ 2, and Kyqo itself. Then, the subgrid stresses are represented by rescaling
the resolved stresses in the test-filter band. Usually, this is done by evaluating the
Smagorinsky coefficient, Cg, from the resolved fluctuations in the test-filter band,
and then using the same coefficient to evaluate the SGS stresses at the same point
in space on the next timestep, for example. This “bootstrap” procedure could be
rigorously justified on the same grounds as for the Smagorinsky formula, above.
The test-filter band would have to lie in the inertial subrange and r,,,,, would
have to be far below the viscous region.

Dynamic models undoubtedly work surprisingly well, even in cases where
rigorous justification is not valid. Jiménez (1995) points out that the essential
feature of an SGS model is to dissipate the kinetic energy cascaded down to it.
Jiménez and Moser (2000) elaborate further on the efficacy of dynamic models.
On the one hand, any eddy-viscosity model assumes the subgrid stresses are
“perfectly related” to the strain rate, even though they are essentially uncorrelated.
On the other hand, dynamic models are “very robust™ to this fundamental error in
physics, largely because “the formula for their eddy viscosity contains a sensor
that responds to the accumulation of energy in the high wave numbers of the
spectrum before it contaminates the energy containing range.”
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The dynamic-model concept has been implemented with intrinsically more re-
alistic models than Smagorinsky’s. Pomraning and Rutland (2002) and Krajnovi¢
and Davidson (2002), for example, have done computations with the dynamic
one-equation model devised by Menon and Kim (1996). The equation they use
is loosely based on the subgrid kinetic energy.

However, it is clear that, whatever SGS model is used, the test-filter concept
implies that the structure of the SGS turbulence is similar to that in the test-filter
band, which will not be the case when the local turbulence Reynolds number,
Re,, is small, as it is near a solid surface. Unfortunately, this is the most critical
region for an SGS model. Unless the LES is to collapse into DNS, the SGS
model must carry a significant portion of the Reynolds stresses.

It is a symptom of the inadequacy of the Smagorinsky mixing-length formula
that dynamic-model values of (s evaluated from the calculated motion in the
test-filter band fluctuate wildly in space and time. “Dynamic” is all toc apt a
name for this model when used with the Smagorinsky formulation. A particular
difficulty arising from this is that if the implied eddy viscosity is negative, kinetic
energy can be transferred from the SGS motion to the resclved scales. This is,
in principle, the real-life phenomenon of backscatter, i.e., reverse cascading of
energy from smaller to larger eddies. The statistical-average energy transfer at
high wavenumber is always towards the dissipating range, but this is not true
instantaneously. However, negative eddy viscosity usually leads to instability of
the calculation because there is nothing in the Smagorinsky formula to limit the
depletion of SGS kinetic energy. A simple fix is to average C's over a direction
of homogeneity of the flow. As an alternative, Ghosal et al. (1995) and others
have modeled an equation for SGS Kinetic energy and used it to cut off the SGS
eddy viscosity when the SGS energy falls to zero.

A subgrid-scale model with some general similarities to the dynamic model
has been suggested by Domaradzki and Saiki (1997). The resolved motion is
interpolated on a length scale of half the grid size, and the phases of the resulting
subgrid modes are adjusted to correspond to the phases of the subgrid modes that
would be generated (in a DNS) by nonlinear interactions of the resolved modes
in the LES. This “bootstrap” procedure seems to be rigorously justifiable and
initial results are promising.

8.3.3 “Off the Wall” Boundary Conditions

If LES is to be applied to wall flows at indefinitely high Reynolds numbers, the
viscous sublayer or viscous wall region (typically u,y/v < 30 — see Figure 1.7)
must be excluded from the main computation. Moreover, the distance of the first
LES grid point from the solid surface at ¥ = y» must be independent of Reynolds
number. It must be set at some suitable fraction of the shear-layer thickness, 9,
so that the total number of grid points is also independent of Reynolds number.
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We use y» to denote the first LES point from the wall for conformity with the
rest of the book, irrespective of the arrangements y < y,. If the first grid
point is set at a given value of u,y/v and if, as usual, the y step increases
proportional to y, the number of grid points required in the y direction increases
proportional to €nd* where 6% = u,d/v is the sublayer-scaled flow width (see
problems section). This implies that the computer work required (number of grid
points in the three-dimensional domain divided by timestep) will vary as (¢né+)?
approximately. Thus, a factor of 10 increase in Reynolds number means a factor
of 30 increase in computer work.

Allowing the SGS model to bear more and more of the Reynolds stresses as
the wall is approached [Speziale (1998)] does not remove the Reynolds-number
dependence of the grid-point count. This is so even if the SGS model limits to
a reliable Reynolds-Averaged Navier Stokes (RANS) model for a coarse mesh.
The mesh must still be graded, so the number of points needed in the y direction
is still proportional to fnd*, with a different proportionality constant, even for
full RANS calculations. For example, in Spalart’s (1988) boundary-layer DNS,
u,y2/ v is between 0.2 and 0.3, while most low-Reynolds-number RANS models
require u, ¥z /v < 1. So, there is not usually an order-of-magnitude difference
between the number of points in the y direction for simulations and for RANS
calculations (RANS models can of course use much larger steps in = and 2).

The current fashion in RANS modeling is integration to the wall rather than
the use of off-the-wall boundary conditions (wall functions in RANS model-
ing terminology). For the geometrical-progression grid with grading ratio,
kg = 1.14 and y; < 1 recommended for typical computations with Program ED-
DYBL (see Appendix C), about 50 points are needed up to y = § at momentum-
thickness Reynolds number 1410 (6* = 650). The number increases by 17-18
points for every factor of 10 increase in . Spalart’s DNS at this Reynolds
number used 62 points up to y = 4.

Note also that the above discussion is phrased, qualitatively at least, in “law-
of-the-wall” language. However, if LES is to be a significant improvement on
RANS models, it must deal with strongly-nonequilibrium flows, notably sepa-
rated flows, in which the simple law of the wall is not valid. Indeed the status of
the law of the wall is uncertain even in moderately three-dimensional boundary
layers.

The earliest LES of a “laboratory” flow [Deardorff (1970)] used the log-
arithmic law of the wall for the mean velocity as an instantaneous boundary
condition. This crude approach was followed by other early workers. However,
experiments by Robinson (1986) showed that the instantaneous friction velocity
is not a good scale for the instantaneous velocity in the logarithmic region.

If LES is to be applied to high-Reynolds-number engineering flows, not
only must the “wall” boundary condition be applied at a distance y, from the
surface which is a (not-too-small) fraction of 4, but any calculation for the region
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0 < y < yg2 should be Reynolds-number independent. Quantitative use of law-of-
the-wall concepts is not acceptable in the long term. For most purposes, details
of the flow in 0 < y < y, will not be important as long as the surface-flux rates
(of momentum, heat and possibly mass) can be related to those at y = ys.

Piomelli, Yu and Adrian (1996), Cabot (1997) and Baggett (1997) have stud-
ied “off the wall” boundary conditions. On the one hand, used with care, the
instantaneous log law works satisfactorily for simple flows. On the other hand,
Cabot found it to be unsatisfactory for separated flows such as the backward-
facing step (where the law of the wall does not apply).

8.3.4 Applications

Estimates for the numbers of grid points, and computing times, needed for LES
calculations of, say, the flow over a complete aircraft [e.g., Spalart et al. (1997),
Moin and Kim (1997)] lie far beyond the capability of current computers, even
if one assumes that a satisfactory “off the wall” boundary condition can be
found. However, current Reynolds-averaged models perform acceptably well in
two-dimensional or mildly three-dimensional boundary layers not too close to
separation — that is, in most of the turbulent flow over an aircraft. Something
better is needed in critical areas, such as wing-body junctions, tip vortices and
separated flows. If LES is to be used in such areas, patched to a Reynolds-
averaged calculation for the rest of the flow, some means is needed for providing
time-dependent boundary conditions at the upstream end, and the sides, of the
LES computational domain. This may involve enlarging the LES domain so
that it considerably overlaps the region of reliable Reynolds-averaged prediction,
imposing rough-and-ready boundary conditions at the edges of this domain, and
then rescaling the LES in some way so that its statistics match those of the
Reynolds-averaged model on the boundary of reliability of the latter. Spalart et
al. (1997) suggest Detached Eddy Simulation or DES, combining Reynolds-
averaged models in the boundary layers and coarse-mesh LES after a massive
separation. We will discuss this approach in the next section.

Other engineering applications are less demanding than aircraft in terms of
Reynolds number, but may be more demanding in terms of complex flow patterns.
LES is likely to be applied first to internal flows.

Combustion is notoriously difficult to model at the Reynolds-averaged level,
and fine-mesh DNS with the large number of species equations required for a
realistic combustion model is currently out of the question for engineering use.
Therefore, there is some interest in LES for combustion. Clearly the subgrid-scale
model has to reproduce the statistics of fine-scale mixing of reactants, leading to
the essentially molecular diffusion that finally brings the reactants together, and
this seems a very severe requirement. Veynante and Poinsot (1997) and Pitsch
(2006) review recent LES studies of combusting flows.
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‘Two-phase flows [see Crowe et al. (1996) for a review] are central to many
processes in technology and nature, from combustion of droplets or particles to
cloud physics and bubble flows in fluidized-bed reactors. Several DNS studies
have been reported. LES, with the need to add subgrid-scale motion of particles
or bubbles to the larger-scale computed trajectories, is a longer-term prospect.
Wang and Squires (1996) report good agreement between LES and DNS.

Compressible flow and heat transfer present no special difficulties to LES
except for the presence of more equations to solve. Extension of subgrid-scale
models to variable-density flows is straightforward and true corupressibility ef-
fects in the weak small-scale motion are likely to be negligible. The review by
Knight et al. (2003) includes results of LES applications to flows that include
shock-induced boundary-layer separation. Figure 8.2 (a), for example, shows the
convoluted shape of the shock wave for Mach 2.88 flow into a 25° compression
corner. Figure 8.2 (b) shows results for an expansion followed by a compression,
again at Mach 2.88. Despite having a Reynolds number in the LES that is sig-
nificantly lower than in the experiments, computed and measured mean surface
pressures are reasonably similar. The close agreement in this case is very likely
due to the fact that this flow is remarkably insensitive to Reynolds number.
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Figure 8.2: Results of LES applications to Mach 2.88 compression-corner Slows.
[Figure provided by D. D. Knight.]

In conclusion, LES holds promise as a future design tool, especially as com-
puters continue to increase in speed and memory. Intense efforts are currently
focused on devising a satisfactory SGS stress model, which is the primary defi-
ciency of the method at this time. Even if LES is too expensive for modern design
efforts, results of LES research can certainly be used to help improve engineering
models of turbulence. The future of LES research appears very bright.
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8.4 Detached Eddy Simulation

Spalart et al. (1997) introduced the Detached Eddy Simulation (DES) method as
a cost-effective procedure that treats the largest eddies through a conventional
LES, while handling boundary layers and thin shear layers with the conventional
RANS approach. In practice, cell spacing, A, in a DES is of the same order of
magnitude as the boundary-layer thickness.

One way of viewing DES is as an extension of a standard turbulence model
based on Reynolds averaging intc more complex flows. This is made possible by
computing the geometry-dependent, three-dimensional eddies whose details are
lost in Reynolds-averaging. Another way of viewing a DES is as a method for
resolving the difficult task of establishing “off-the-wall” boundary conditions,
with the hope that the DES converges toward an LES as the grid is refined. The
discussion of “DES-blending functions” below strongly suggests that the latter
view is unrealistic for DES as currently implemented.

As with DNS and LES, accurate numerical methods are imperative, espe-
cially for the LES part of the computation. Constantinescu and Squires (2000),
for example, use “fifth-order accurate, one-point biased differences” in treat-
ing the convective terms for the momentum and turbulence-transport equations,
while using conventional second-order accurate differencing for all other terms.
Accurate methods have been devised to treat both inflow [Xiao, Edwards and
Hassan (2003a)] and outflow [Schliiter, Pitsch and Moin (2005)] conditions for
DES applications.

The RANS part of the computation requires selection of a suitable turbulence
model. Most studies to date have been done with the Spalart-Allmaras (1992)
one-equation model, a k-w model or the Robinson et al. (1995) k-C (enstrophy)
model.

8.4.1 DES-Blending Functions

A crucial ingredient in the DES methodology is the way the computation dif-
ferentiates between the RANS and LES portions of the computation. Roughly
speaking, we have two critical length scales. One is the effective turbulence
length scale implied by the model, £z4ns, 1.€.,

lrans = \/’k?/u) (8.37)
The other is the local finite-difference cell size, A, so that
lrps = A (8-38)

Cells in which £ ans < frgs are treated as part of the “subgrid” and deemed
unresolvable. The hybrid RANS model is used as an effective subgrid scale
(SGS) model.
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The way in which we distinguish the appropriate length scale and computa-
tional mode (RANS or LES) is called blending. Although the terminology has
been adopted by DES researchers, it holds potential for confusion. That is, the
nomenclature “blending functions” was originally used to make k-w model clo-
sure coefficients vary from one set of values near a solid boundary to another set
near turbulent/nonturbulent interfaces [cf. Menter (1992c¢) or Hellsten (2005)].
To avoid confusion here, we will refer to “DES-blending functions.”

The most popular way of blending in current usage is to modify the dissipa-
tion term in the RANS model. For the Spalart-Allmaras model, this means the
equation for the working variable, &, which is proportional to the eddy viscosity,
vr, 1S written as (see Section 4.2)

o5 o5 . o\?  cy 89 O
E-FUJ% = CblSV—CwlfW<§) —;37::93%
1 8 N
5 EE[(HV)BM] (8.39)

In the original Spalart-Allmaras model, the quantity d is the distance to the
nearest surface, d. For DES applications, d is defined by

d = min(d, CppsA) | (8.40)

where A is the size of the smallest resolvable scale. Also, Cprs = 0.65 is a
closure coefficient whose value has been determined by results of homogeneous
turbulence computations.

In a similar spirit, most researchers rewrite the turbulence kinetic energy
equation of the k-w model as '

ok ok oU; s k3/2
o T Vigy, = Mgy, ~U-DFkw-TC 7z
9 . .0k

The constant C3 = 0.01 and the function I' have been introduced to effect the
DES-blending. Xiao, Robinson and Hassan (2004) use a similar procedure with
their k-¢ model in which ¢ is the modeled enstrophy of the turbulence. They
also include the function I' in the equation for the eddy viscosity according to

k
vy = (1—P)$+FOS\/EA (8.42)

where (C; = 0.01 is a closure coefficient. As we will see below, the function T’
has a strong effect on turbulence-model predictions.
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It is a straightforward exercise to demonstrate that, when production balances
dissipation in either of these models, the eddy viscosity simplifies to an effective
Smagorinsky-type model, viz.,

vr = CsA%|S|, §=./25;;5:; (8.43)

where Cj is an effective Smagorinsky coefficient that depends on the turbulence
model’s closure coefficients.

Ideally, the DES-blending procedure would have little impact on a RANS
model’s predictions in regions where the RANS model yields flow-property val-
ues that are in reasonably close agreement with measurements. The recent study
by Xiao, Edwards and Hassan (2004) provides an example of how a DES is
capable of corrupting a very good RANS solution. In their study, they assess
three different DES-blending functions to determine the effect on a DES for two
computations of supersonic flow into a compression corner. The functions tested
are all of the form

[ = tanh(n?) (8.44)

The three different DES-blending functions differ in the choice of the parameter
n, viz.,

g’uk ) S 2
o5\ Von Karman : €, = TV?!’ )\ — E
= 5‘2} d = Distance to the nearest surface (8.45)
- 1{3/2
{ ;—;, Integral scale: £, = 7

The various lengths appearing in Equation (8.45) are the Von Karman length,
£,%, the Taylor microscale, A\, and the dissipation length, £..

Figures 8.3 (a) and (b) show the effect of I',x and I'a (based on £, and
¢., respectively) on computed surface pressure for the two compression-corner
flows. Although not shown, the DES-blending function based on distance to the
nearest surface produces inferior solutions. Ironically, DES results actually show
greater discrepancies from measurements than the pure k-( model, especially
over the separation bubble.

Xiao, Edwards and Hassan provide a clue to why, rather than providing an
improved solution, the DES yields the opposite. The clue lies in the behavior of
the eddy viscosity, which is shown in Figure 8.3 (c) for the 20° compression cor-
ner. As shown, all three DES-blending functions make the RANS eddy viscosity
very small compared to the value it would have in a pure RANS computation
for y© > 500, which is well below the boundary-layer edge. This is, of course,
necessary to avoid polluting the LES part of the computation. However, there
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is a steep price that has been paid. Specifically, the RANS model’s solution is
dramatically altered not only in the outer part of the boundary layer, but in the
near-wall region as well. That is, use of the DES-blending function changes the
RANS model in a way that defeats some of its strengths.
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Figure 8.3: Results of DES applications to supersonic compression-corner flows.
[From Xiao, Edwards and Hassan (2004) — Copyright (© AIAA 2004 — Used

with permission.]

This problem was anticipated by Spalart et al. (1997), who warned that once
the grid spacing becomes smaller than about half the boundary-layer thickness,
the DES-limited eddy viscosity simultaneously corrupts the RANS model and
precludes LES behavior. The net result is total Reynolds stresses that are repre-
sentative of neither the RANS model nor the LES.
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We can use Program DEFECT (see Appendix C) to illustrate the point. The
following computations implement yet another DES-blending function, i.e., the
one recommended by Menter [see Xiao, Edwards and Hassan (2000b)], viz.,

I’ =1 — tanhn* (8.46)
where JE
max(7y, T2 500v k

7= ( 1 ) : ™ = 5™ To = = (8‘47)
w Yy B*y

The quantity » is kinematic molecular viscosity and y denotes distance normal
to the surface. For the present analysis we are sufficiently far above the viscous
sublayer that molecular viscosity is of negligible importance to the RANS model
so that
_ \/E/UJ _ H}_ERANS
By By
Figure 8.4 compares the computed wake-strength parameter, II, with the
baseline value of the Wilcox (1998) k-w model for constant-pressure and adverse
pressure gradient cases. The computations use the values of I" and 7 defined in
Equations (8.46) and (8.48). The alternative proposals for I' in Equation (8.45)
give results are similar to those presented in Figure 8.4.

(8.48)

11 11

1.5 T T 6.0 T H
ﬁr = 0.0 ﬁ’r = 8.7

1.0 F - 5.0 F

4.0

Baseline RANS '

0.0 4 :

Figure 8.4: Computed wake-strength parameter, 11, for the Wilcox (1998) k-w
rwo-equation RANS model; — v+ not modified, - - - v modified.

We obtain somewhat different results depending on whether or not Equa-
tion (8.42) is used to modify the kinematic eddy viscosity, vr. As shown, when
we use Equation (8.42), the better the resolution of the flow, i.e., as A becomes
smaller, the greater the distortion of the baseline model’s predicted value for IL.
When we use the value of v as predicted by the RANS model, the k-w model’s
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predictions are essentially insensitive to A. However, the computed value of II
lies far below the baseline k-w model’s solution even when A becomes very
large compared to the entire boundary layer thickness! Although results are not
included here, the Spalart-Allmaras model displays the same type of behavior.
This limitation on DES occurs because, until very recently, the RANS models
used depend upon A. Spalart et al. (2006), by introducing an algebraic function to
retain RANS within the boundary layer when A < 4, have suggested a remedy for
this problem that they refer to as Delayed Detached Eddy Simulation (DDES).

8.4.2 Applications

There is a growing list of successful DES applications to both research-oriented
problems to very complicated industrial and military applications. Focusing first
on a relatively simple research-oriented application, consider the flow on the
base of a cylinder in a Mach 2.5 stream. Herrin and Dutton (1994) found
experimentally that the pressure coefficient is nearly constant over the entire base
region. By contrast, conventional RANS models predict a pressure coefficient,
Clp, that varies with radial distance. Figure 8.5 compares computed and measured
Cp for a DES based on the Spalart-Allmaras model [Forsythe et al. (2002)].
For reference, the figure includes results obtained with the Wilcox (1998) k-w
model, the Wilcox (1998) Stress-w model and the RNG k-e¢ model [Papp and
Ghia (2001)]. The DES clearly reproduces the experimentally-observed constant
base pressure, which is the feature that has eluded RANS models.

r/R
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0.8

0.6 -
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0.2 |-

0.0 <
-0.20 —-0.15 -0.10 -—-0.05 0.00

Cyp

Figure 8.5 Base pressure for Mach 2.5 flow past a cylindrical body with a
square-cut base; —— DES; «----- Wilcox (1998) Stress-w model; - - - Wilcox
(1998) k-w model; — — — RNG k-e model; O Herrin-Dutton.
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Another major success is the accurate prediction of the drag force on Ahmed’s
body, the simplified automobile-like geometry experimentally documented by
Ahmed et al. (1984). Recall from Section 4.10 that the Standard k-e¢ model
predicts a drag coefficient that is 30% higher than measured. Kapadia, Roy and
Wurtzler (2003) have performed a DES based on the Spalart-Allmaras model
for Ahmed’s body with an after-body slant angle of 25°. Figure 8.6 compares
iso-surfaces of zero streamwise velocity for the DES and a pure RANS computa-
tion with the Spalart-Allmaras model. The presence of large, unsteady counter-
rotating vortices dominate in the wake of the body — features that are not present
in the RANS computation. The DES drag coefficient is within 5% of the mea-
sured value.

(a) Reynolds Averaged Navier Stokes (b) Detached Eddy Simulation

Figure 8.6: Iso-surface of zero streamwise velocity for flow past Ahmed’s body.
[From Kapadia, Roy and Wurtzler (2003) — Copyright (C) AI4A4A 2003 — Used
with permission.] ~

The intense interest in DES is driven by its amenability to very complicated
applications such as flow around an airplanc. Such simulations have been and
are continuing to be done by numerous researchers. Blessed by much shorter
computing times than LES, the method holds great promise for enhancing our
ability to use DES in a manner that can help in developing new designs.

8.5 Chaos

Our final topic is chaos, a mathematical theory that has attracted considerable
attention in recent years. At the present time, no quantitative predictions for
properties such as the reattachment length behind a backward-facing step or
even the skin friction on a flat plate have been made. Hence, its relevance to
turbulence modeling thus far has not been as a competing predictive tool. Rather,
the theory’s value is in developing qualitative understanding of turbulent-flow
phenomena.
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Chaos abounds with colorful terminology including fractals, folded towel
diffeomorphisms, smooth noodie maps, homeomorphisms, Hopf bifurcation
and the all-important strange attractor. Chaos theory stretches our imagination
to think of noninteger dimensional space, and abounds with marvelous geomet-
rical patterns with which the name Mandelbrot is intimately connected.

In the context of turbulence, the primary focus in chaos is upon nonlin-
ear dynamical systems, i.e., a coupled system of nonlinear ordinary differential
equations. Mathematicians have discovered that certain dynamical systems with
a very small number of equations (degrees of freedom) possess extremely compli-
cated (chaotic) solutions. Very simple models have been created that qualitatively
reproduce observed physical behavior for nontrivial problems. For example, con-
sider an initially motionless fluid between two horizontal heat-conducting plates
in a gravitational field. Now suppose the lower plate is heated slightly. For small
temperature difference, viscous forces are sufficient to suppress any mass motion.
As the temperature is increased, a threshold is reached where fluid motion begins.
A series of steady convective rolls forms, becoming more and more complicated
as the temperature difference increases, and the flow ultimately becomes time-
dependent and then nonperiodic/chaotic/turbulent. This is the Rayleigh-Bénard
instability.

One of the famous successes of chaos theory is in qualitatively simulating
the Rayleigh-Bénard flow with the following three coupled ordinary differential
equations

dX )

- = ¥ =X)/Pr,

%— =-XZ+rX-Y } (8.49)
% =XY —-bZ

dt J

The quantity Pr, is the Prandtl number, b and r are constants, and X, Y and
Z are related to the streamfunction and temperature. The precise details of the
model are given by Bergé, Pomeau and Vidal (1984), and are not important for
the present discussion. What is important is that this innocent-looking set of
equations yields a qualitative analog to the convection problem, including the
geometry of the convection rolls and a solution that resembles turbulent flow.
The central feature of these equations is that they describe what is known
as a strange attractor. This particular attractor was the first to be discovered
and is more specifically referred to as the Lorenz attractor. For the general
case, in some suitably defined phase space in which each point characterizes the
velocity field within a three-dimensional volume (X, Y and Z for the Lorenz
attractor), the dynamical system sweeps out a curve that we call the attractor.
The concept of a phase space is an extension of classical phase-plane analysis of
ordinary differential equations [c.f. Bender and Orszag (1978)]. In phase-plane



454 CHAPTER 8. NEW HORIZONS

analysis, for example, linear equations have critical points such as the focus,
the node and the saddle point. For a dynamical system, if the flow is steady,
the “curve” is a single point, because the velocity is independent of time. If
the flow is periodic in time the curve is closed and we have the familiar limit
cycle. The interesting case in chaos is the unsteady, aperiodic case in which the
curve asymptotically approaches the strange attractor. If the dynamical system is
dissipative, as the Lorenz equations are, the solution trajectories always converge
toward an attractor. Additionally, a slight change in the initial conditions for X,
Y and Z causes large changes in the solution,

Chaos theory puts great emphasis on the strange attractor, and one of the
primary goals of chaos research is to find a set of equations that correspond to
the turbulence attractor. A dynamical regime is chaotic if two key conditions
are satisfied.

1. Its power spectrum contains a continuous part, i.€., a broad band, regardless
of the possible presence of peaks.

2. The autocorrelation function goes to zero in finite time.

Of course, both of these conditions are characteristic of turbulence. The latter
condition means there is ultimately a loss of memory of the signal with respect
to itself. This feature of chaos accounts for the strange attractor’s sensitive de-
pendence en initial conditions. That is, on a strange attractor, two neighboring
trajectories always diverge, regardiess of their initial proximity, so that the tra-
jectory actually followed by the system is very sensitive to initial conditions. In
chaos studies, this is known as the butterfly effect — the notion that a butterfly
flapping its wings in Beijing today can change storm systems in New York next
month.? It goes by the more formal name of predictability and was mentioned
in Section 8.2 in discussion of the sensitivity of DNS and LES to initial condi-
tions. The predictability horizon is the time beyond which predictions become
inaccurate, however precise the calculations. Ruelle (1994), in a useful review
of possible applications of chaos theory, points out that the motion of the planets
in our Solar system is chaotic, with a predictability time of about 5 million
years -— only about 20000 times the orbital period of (the recently demoted
“dwarf-planet™) Pluto.

While all of these observations indicate there may be promise in using chaos
theory to tackle the turbulence problem, there are some sobering realities that must
be faced. The broad spectrum of wavelengths in the turbulence spectrum, ranging
from the Kolmogorov length scale to the dimension of the flow, is far greater

2 Although this is a colorful way to describe sensitivity to initial conditions, it is based on a gross
exaggeration. To alter a storm system, the butterfly would have to trigger a substantial amount of
backscatter, i.e., cause energy to cascade from the very smallest eddies to the energy-bearing eddies.
Such an event is highly improbable.
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than that of the dynamical systems that have been studied. Hence, as deduced by
Keefe (1990) from analysis of DNS data, the dimension of the turbulence attractor
(in essence, the number of equations needed to describe the attractor) must be
several hundreds even at Reynolds numbers barely large enough for turbulence
to exist. It seems essentially unlikely that a low-dimensional dynamical system
can emulate turbulence to engineering standards of accuracy.

The layman-oriented book by Gleick (1988) provides an excellent introduc-
tion to this fascinating theory in general. See also the abovementioned short
review by Ruelle (1994). As a more focused reference, Deissler (1989) presents
a review of chaos studies in fluid mechanics.

8.6 Further Reading

Fluid dynamics is sometimes calied a “mature science,” but the capabilities of
CFD are expanding rapidly as computer power increases, and the subject will
have advanced considerably before this edition of Turbulence Modeling for CFD
is replaced. Many bibliographies such as Inspec (general physical science) and
Ei Compendex (engineering) are available on the Internet, generally via site
licenses to institutions. A selected bibliography, with abstracts, of turbulence
and related subjects is freely available on the World Wide Web at

hitp://navier.stanford.edu/bradshaw/resp_b.html

Maintained by Prof. Peter Bradshaw, this bibliography goes back to 1980, with
some earlier references, and is updated periodically. The reader who wishes to
remain up to date should use all of these resources.
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Problems

8.1 To help gain an appreciation for how much computing power is needed for a DNS,
consider the following. Table 8.1 lists the number of grid points and timesteps required to
perform a DNS for channel flow as a function of Reynolds number. Evaluate the amount
of 3-GHz Pentium-D microcomputer CPU time needed to do a single multiplication at
each grid point and timestep for the four Reynolds numbers listed in the table. Assume the
microcomputer is capable of 250 megaflops, where a flop is one floating-point operation
(multiply, divide, add or subtract) per second. Express your CPU-time answers in hours.

8.2 A DNS of channel flow with Re, = 180 using 4-10° grid points requires 250 hours of
CPU time on a Cray X/MP. The computation runs for a total time, Tynaz = 5H /u,. You
can assume a Cray X/MP operates at 100 megaflops, where a flop is one floating-point
operation (multiply, divide, add or subtract) per second.

(a) Estimate the number of timesteps taken in the computation.

(b) Ignoring time spent reading and writing to disk, estimate the number of floating-
point operations per grid point, per iteration.

8.3 Assume a DNS of channel flow with Re, = 180 using 4-10° grid points requires 225
hours of CPU time and 25 hours of disk /O time on a Cray X/MP. When the “teraflop”
computer becomes a reality, if its disk /O time is 1000 times faster than that of the 100-
megaflop X/MP, how much total computing time will be needed for this computation?

8.4 To help gain an appreciation for how much computer memory is needed for a DNS and
an LES, consider the following. Table 8.1 lists the number of DNS and LES grid points
for channel flow as a function of Reynolds number. There are three velocity components
and, on a 64-bit computer, each requires 8 bytes of memory. Compute the amount of
memory needed to hold all of the velocity components in memory for the four Reynolds
numbers listed in the table. Express your answers in megabytes, noting that there are
10242 bytes in a megabyte.

8.5 This problem focuses on comparative grid requirements for LES and RANS.

(a) Assume the first grid point above a solid surface, y = y3, is located at the outer
edge of the viscous wall region, u.y2/v = 30. Also, assume that a simple
expanding grid with 4,41 = kgy» 18 used in yo < y < §. Verify that the number
of grid points in the y direction is 1+ fnfu.8/(30v)]/fnk,. Start by showing that
Yn = k;_2y2.

(b) Deduce that if k; = 1.14, as in a coarse-grid computation with Program EDDYBL
(see Appendix C), a factor of 10 increase in u, 6 /v requires 18 more profile points.

(¢) Near the stem of a ship 300 m long traveling at 10 m/sec (corresponding to a
Reynolds number based on length of 10%), u.6/v ~ 1.5- 10°. Show that if
k, = 1.14 and y§ = 30 (wall function for RANS or off-the-wall boundary con-
dition for LES), about 66 points are rieeded in the y direction. Also show that if
ys = 1 (integration to the wall}, about 92 points are needed.
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8.6 Assuming production balances dissipation in the LES region, determine the effective
Smagorinsky constant, C's, implied by the K~ model as defined in Equations (8.41) and
(8.42). Assume the flow is incompressible and express your answer as a function of C,
and Cd.
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Appendix A

Cartesian Tensor Analysis

The central point of view of tensor analysis is to provide a systematic way for
transforming quantities such as vectors and matrices from one coordinate system
to another. Tensor analysis is a very powerful tool for making such transfor-
mations, although the analysis generally is very involved. For our purposes,
working with Cartesian coordinates is sufficient so that we only need to focus
on issues of notation, nomenclature and some special tensors. This appendix
presents elements of Cartesian tensor analysis.

We begin by addressing the question of notation. In Cartesian tensor analysis
we make extensive use of subscripts. For consistency with general tensor-analysis
nomenclature we use the terms subscript and index interchangeably. The com-
ponents of an n-dimensional vector x are denoted as z1, 3, ..., x,. For exam-
ple, in three-dimensional space, we rewrite the coordinate vector x = (x, y, Z)
as X = (z1,72,73). Now consider an equation describing a plane in three-
dimensional space, viz.,

Q171 -+ A&z + azxrz = ¢ (A.1)

where a; and c are constants. This equation can be written as

3
> ami=c (A2)
i=1

In tensor analysis, we introduce the Einstein summation convention and
rewrite Equation (A.2) in the shorthand form

AT =0 (A3)

459
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The Einstein summation convention is as follows:

Repetition of an index in a term denotes summation with respect
to that index over its range.

The range of an index 7 is the set of n integer values 1 to n. An index that is
summed over is called a dummy index; one that is not summed is called a free
index. Since a dummy index simply indicates summation, it is immaterial what
symbol is used. Thus, a;z; may be replaced by a;z;, which is obvious if we

simply note that \ \
Z ;i = Z ajzj (A4)
=1 j=1

As an example of an equation with a free index, consider a unit normal vector
n in three-dimensional space. If the unit normals in the x1, 5 and z3 directions
are i, iz and i3, then the direction cosines a1, a2 and a3 for the vector n are

o = Mg (AS)

There is no implied summation in Equation (A.5). Rather, it is a shorthand for
the three equations defining the direction cosines. Because the length of a unit
vector is one, we can take the dot product of (a1, a2, a3} with itself and say that

gy, == 1 (A6)

As another example, consider the total differential of a function of three
variables, p(x1, z2, 2:3). We have

dp dp Bp
d —d —d - .
N = o wl-l-d o 2:2+d dxs (A7)
In tensor notation, this is replaced by
a
dp = éida:i (A.8)

Equation (A.8) can be thought of as the dot product of the gradient of p, namely
Vp, and the differential vector dx = (dz1, dx2, dz3). Thus, we can also say that
the ¢ component of Vp, which we denote as (Vp);, is given by

Op
(Vp)i = 5g, = P (A.9)
T
where a comma followed by an index is tensor notation for differentiation with
respect to x;. Similarly, the divergence of a vector u is given by
81)31'
8:1?1'
where we again denote differentiation with respect to z; by “,1

V-u=

= ’!'L,;’i (AIO)
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Thus far, we have dealt with scalars and vectors. The question naturally
arises about how we might handle a matrix. The answer is we denote a matrix
by using two subscripts, or indices. The first index corresponds to row number
while the second corresponds to column number. For example, consider the 3 x 3
matrix {A] defined by

A Ay Asg
[A] = | A1 A Ao (A.11)
' Azi Aszx Ass

In tensor notation, we represent the matrix [A] as A4;;. If we post-multiply an
m X n matrix B;; by an n x 1 column vector x;, their product is an m x 1
column vector y;. Using the summation convention, we write

¥ = Bijx; (A.12)

Equation (A.12) contains both a free index (i) and a dummy index (7). The
product of a square matrix A;; and its inverse is the unit matrix, i.e.,

1 0 0
[AlfA]"'=10 1 0 (A.13)
0 0 1
Equation (A.13) is rewritten in tensor notation as follows:
Air(A Yy = 655 (A.14)
where §;; is the Kronecker delta defined by
5 ={ 5 (A.15)
We can use the Kronecker delta to rewrite Equation (A.6) as
o005 =1 (A.16)

This corresponds to pre-multiplying the 3 x 3 matrix d;; by the row vec-
tor (a1, az, a3) and then post-multiplying their product by the column vector
(a1, ag, a3)T, where superscript 7' denotes transpose.

The determinant of a 3 x 3 matrix A;; is

Ary Aia A
Az Agy Az | =
Az Azs  Ass

A11A22A33 + A2 As2A413 + As1 A1 Ass

A,
—~A11A32A23 — A12A421 Ass — A13490 A3, {ed2)
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Tensor analysis provides a shorthand for this operation as well. Specifically, we
replace Equation (A.17) by

det(A,-j) = |A.ij| = ErstArlAsgAw (AIS)
where €, is the permutation tensor defined by

€123 = €231 — €312 =1
€213 = €32] = €132 = —1 (A.19)
€111 = €292 = €333 = €112 = €113 = €221 == €223 = €331 = €332 = 0

In other words, €;;; vanishes whenever the values of any two indices are the
same; €. = 1 when the indices are a permutation of 1, 2, 3; and ¢;;x = —1
otherwise.

As can be easily verified, the cross product of two vectors a and b can be

expressed as follows.
(axXh); = €ijk@ibk (A.20)

In particular, the curl of a vector u is

ou
(V X )i = eijns— = eijrtin,; (A21)
J

The Kronecker delta and permutation tensor are very important quantities
that appear throughout this book. They are related by the e-¢ identity, which is
the following.

€ijk€ist = 0550kt — 0;¢0ks (A.22)

All that remains to complete our brief introduction to tensor analysis is to
define a tensor. Tensors are classified in terms of their rank. To determine the
rank of a tensor, we simply count the number of indices.

The lowest rank tensor is rank zero which corresponds to a scalar, i.e., a
quantity that has magnitude only. Thermodynamic properties such as pressure
and density are scalar quantities. Vectors such as velocity, vorticity and pressure
gradient are tensors of rank one. They have both magnitude and direction.
Matrices are rank two tensors. The stress tensor is a good example for illustrating
physical interpretation of a second-rank tensor. It defines a force per unit area
that has a magnitude and two associated directions, the direction of the force
and the direction of the normal to the plane on which the force acts. For a
normal stress, these two directions are the same; for a shear stress, they are (by
convention) normal to each other.

As we move to tensors of rank three and beyond, the physical interpretation
becomes more difficult to ascertain. This is rarely an issue of great concern since
virtually all physically relevant tensors are of rank 2 or less. The permutation
tensor is of rank 3, for example, and is simply defined by Equation (A.19).
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A tensor a;; is symmetric if a;; = a;;. Many important tensors in mathe-
matical physics are symmetric, e.g., stress, strain and strain-rate tensors, moment
of inertia tensor, virtual-mass tensor. A tensor is skew symmetric if a;; = —a;;.
The rotation tensor, ;; = Z(u;,; — u,,;) is skew symmetric.

As a final comment, in performing tensor-analysis operations with tensors that
are not differential operators, we rarely have to worry about preserving the order
of terms as we did in Equation (A.16). There is no confusion in writing dij0050e;
in place of @;d;j¢ ;. This is only an issue when the indicated summations actually
have to be done. However, care should be exercised when differentiation occurs.
As an example, V - u = Ju,/0z; is a scalar number while u+V = 4;3/0z; is a
scalar differential operator.
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Problems

A.1 Use the €-¢ identity to verify the well known vector identity
AX(BxC)=(A-C)B-(A-B)C

A.2 Show that, when ¢, 7, k range over 1, 2, 3
(a) di;0;, =3
(b) €ijnejne = 6
(¢) €ijxAjAr =0
(d) 6ijdjr = dsx

A3 Verify that 25;; ; = V?u, for incompressible flow, where S;; is the strain-rate tensor,
Le, Si = §(uiy + ).

A4 Show that the scalar product 5;;€2;; vanishes identically if S;; is a symmetric tensor
and §2;; is skew symmetric.

A5 If u; is a vector, show that the tensor wir = €:;u; i skew symmetric.

A.6 Show that if Ajx is a skew-symmetric tensor, the unique solution of the equation
wy = %GijkAjk i8S Amn = Emnili.

A.7 The incompressible Navier-Stokes equation in a coordinate system rotating with con-
stant angular velocity €2 and with position vector X = xyix is

o
5-‘—:-+u-Vu+29xu=—V(%) —OXXx+vVi

(a) Rewrite this equation in tensor notation.

{b) Using tensor analysis, show that for £ = Q k (k is a unit vector aligned with £2),
the centrifugal force per unit mass is given by

ol

_2X QX x= V(- za) — [k V(%ngka:k)}k

3]

A.8 Using tensor analysis, prove the vector identity

u-Vu=V(%u-u)—u>< (V x u)
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Rudiments of Perturbation
Methods

When we work with perturbation methods, we are constantly dealing with the
concept of order of magnitude. There are three conventional order symbols
that provide a mathematical measure of the order of magnitude of a given quantity,
viz., Big O, Little o, and ~. They are defined as follows.

Big O:
f(6) = Olg(d)] as 6 — 4, if a neighborhood of J, exists and a constant A
exists such that | f| < M]|g|, i.e., f(8)/g(6) is bounded as § — §,,.

Little o:
f(0) = olg(6)] as 6 — &, if, given any e >> 0, there exists a neighborhood
of 8, such that |f| < €|g|, i.e., f(8)/g(8) — 0 as § — 6.

~

f(6) ~ g(6) as § — §, if f(6)/g(d) — 1 as 6 — .

For example, the Taylor series for the exponential function is

1 1
P =]zt z? .. B.1
e x + 5% 61‘ + (B.1)
where .- - is conventional shorthand for the rest of the Taylor series, i.c.,
2 —1\ e
o=y (__)]_ B2)
n!
n=4
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In terms of the ordering symbols, we can replace “- - - as follows.
1 1 :
e =1—x+ %mz - gm?’ +0(EY)=1-x+ %:ﬁ - -61:3 +o(z?) (B.3)

We define an asymptotic sequence of functions as a sequence ¢, (d) for
n=1,23,... satisfying the condition

Pn+1(8) = o[pn(8)] as 56, (B4)
Examples of asymptotic sequences are:
nl8) = L,(5— 60, (5 — 80)2 (6= 6s)0r... 66,
dn(d) = 1,81/2,5802, ... 50 @)
da(6) = 1,6,6%nd, 6%, ... 6§ —0
dulz) = T F a7 Y T — 00

We say that g(d) is transcendentally small if g(4) is o[¢,,(8)] for all n. For
example,
e"1/8 = o(6") foralln (B.6)

An asymptotic expansion is the sum of the first N terms in an asymptotic
sequence. [t is the asymptotic expansion of a function F'(6) as 6 — §, provided

N
F(6) =) anon(d) + olpn(d)] (B.7)

n=1

The following are a few useful asymptotic expansions generated from simple
Taylor-series expansions, all of which are convergent as 6 — 0.

(146" ~ 1+4nd+2n=s2 4 053
n(1+8) ~ 6&— 38+ 16 +0(5Y)
(1-38)"1 ~ 1438+8+0(6°

»

el ~ 1+6+ 362+ 0(8) > (B.8)
cos & ~ 1 - 38% + 5261 + O(65)

sin & ~ 6— 38+ 556° + O(87)

tan & ~ 6438+ 85 +0(87)

Not all asymptotic expansions are developed as a Taylor series, nor are they
necessarily convergent. For example, consider the complementary error function,

erfc(x), i.e.,

erfe(z) = —% foo et dt (B.9)
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We can generate an asymptotic expansion using a succession of integration-by-
parts operations. (To start the process, for example, multiply and divide the
integrand by ¢ so that texp(—t2) becomes integrable in closed form.) The
expansion 1is:

= A(1)3)...(2n 1)
erfc(z) ~ T“«’ 20: —1) 2n+1$2n+1 88 0
2 €T i 3:—-(-} wp

A simple ratio test shows that this series is divergent for all values of z.
However, if we define the remainder after the first NV terms of the series as
Ry (zx), there are two limits we can consider, viz.,

gfﬁ}o |Rn(Z)|Figea v =0  and A}EDDO |Bo (@) pigea = =00 (B.11)

Thus, this divergent series gives a good approximation to erfc(z) provided we
don’t keep toc many terms! This is often the case for an asymptotic series.

Part of our task in developing a perturbation solution is to determine the
appropriate asymptotic sequence. It is usually obvious, but not always. Alsoc,
more than one set of ¢,,(§) may be suitable, i.e., we are not guaranteed uniqueness
in perturbation solutions. These problems, although annoying from a theoretical
viewpoint, by no means diminish the utility of perturbation methods. Usually,
we have physical intuition to help guide us in developing our solution. This
type of mathematical approach is, after all, standard operating procedure for the
engineer. We are, in essence, using the methods Prandtl and von Karméan used
before perturbation analysis was given a name.

A singular-perturbation problem is one in which no single asymptotic
expansion is uniformly valid throughout the field of interest. For example, while
§/z'/? = O(5) as § — 0, the singularity as z — 0 means this expression is
not uniformly valid. Similarly, 6¢nz = O(4) as 6 — O and is not uniformly
valid as x — 0 and as x — o0. The two most common situations that lead to a
singular-perturbation problem are:

(a) the coefficient of the highest derivative in a differential equation is very
small;

(b) difficulties arise in behavior near boundaries.

Case (b) typically arises in analyzing the turbulent boundary layer where loga-
rithmic behavior of the solution occurs close to a solid boundary. The following
second-order ordinary differential equation illustrates Case (a).

d’F dF

5—+—+F—0 0<s5<1 (B.12)
ds? ds
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We want to solve this equation subject to the following boundary conditions.
F(0)=0 and F((1)=1 (B.13)
We also assume that § is very small compared to 1, i.e.,
§< 1 (B.14)

This equation is a simplified analog of the Navier-Stokes equation. The
second-derivative term has a small coefficient just as the second-derivative term
in the Navier-Stokes equation, in nondimensional form, has the reciprocal of the
Reynolds number as its coefficient. An immediate consequence is that only one
boundary condition can be satisfied if we set § = 0. This is similar to setting
viscosity to zero in the Navier-Stokes equation, which yields Euler’s equation,
and the attendant consequence that only the normal-velocity surface boundary
condition can be satisfied. That is, we cannot enforce the no-slip boundary
condition for Euler-equation solutions.

The exact solution to this equation is

ea(l—s) - ea—ﬁs/é

F(s;6) = T aB/ (B.15)
where _
a= 1-vi- "235_4_6 and 3= 1-vi-4o “2‘1“45 (B.16)

which clearly satisfies both boundary conditions. If we set § = 0 in Equa-
tion (B.12), we have the following first-order equation:

dF
— + F = 17
o 0 (B.17)
and the solution, F'(s;0), is e
F(s;0) = el~* (B.18)

where we use the boundary condition at s = 1. However, the solution fails
to satisfy the boundary condition at s = 0 because F'(0;0) = e = 2.71828 - - -,
Figure B.1 illustrates the solution to our simplified equation for several values
of 4.

As shown, the smaller the value of §, the more closely F'(s; 0) represents the
solution throughout the region 0 < s < 1. Only in the immediate vicinity of
s = 0 is the solution inaccurate. The thin layer where F'(s;Q) departs from the
exact solution is called a boundary layer, in direct analogy to its fluid-mechanical
equivalent.
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u(y; 5) A

I
0 1

]

Figure B.1: Solutions to the model equation for several values of 6.

To solve this problem using perturbation methods, we seek a solution that
consists of two separate asymptotic expansions, one known as the outer expan-
sion and the other as the inner expansion. For the outer expansion, we assume
a solution of the form

N
Fouter(8;8) ~ > Fn(s)pn(5) (B.19)
n=0

where the asymptotic sequence functions, ¢, (4), will be determined as part of the
solution. Substituting Equation (B.19) into Equation (B.12) yields the following.

Z[sz 56n(0) + 29 (5J+Fn¢n(6)]=o (B.20)

n=0

Clearly, if we select _
¢n(8) = 8™ (B.21)

we, in effect, have a power-series expansion. Equating like powers of §, the
leading-order (n = 0) problem is Equation (B.17), while the second-derivative
term makes its first appearance in the first-order (n = 1) problem. Thus, our
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perturbation solution yields the following series of problems for the outer ex-
pansion.

dFy 3
— 4+ F, = 0
ds 0
2
ds ds \ (B.22)
dF, d’F,
i I - M
gy "2 ds?

/

Provided we solve the equations in sequence starting at the lowest order
(n = 0) equation, the right-hand side of each equation is known from the pre-
ceding solution and serves simply to make each equation for n > 1 non-
homogeneous. Consequently, to all orders, the equation for F,,(s) is of first
order. Hence, no matter how many terms we include in our expansion, we can
satisfy only one of the two boundary conditions. As in the introductory remarks,
we elect to satisfy F'(1) = 1. In terms of our expansion [Equations {(B.19) and
(B.21)], the boundary conditions for the F,, are

Fo(1)=1 and F,(1)=0 for n>1 (B.23)

The solution to Equations (B.22) subject to the boundary conditions specified in
Equation (B.23) is as follows.

Fo(s) = el
Fi(s) = (1—38)el~* (B.24)

Hence, our outer expansion assumes the following form.
Fouter(8:6) ~ e ™* [14 (1 — 5)6 + O(6%)] (B.25)

In general, for singular-perturbation problems, we have no guarantee that
continuing to an nfinite number of terms in the outer expansion yields a solution
that satisfies both boundary conditions. That is, our expansion may or may not be
convergent. Hence, we try a different approach to resolve the region near s = 0.
We now genecrate an inner expansion in which we stretch the s coordinate.
That is, we define a new independent variable o as follows.

(B.26)
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We assume an inner expansion in terms of a new set of asymptotic-sequence
functions, ¥, (4), i.e.,

N
Finner(058) ~ Y~ fu(0)1hn(8) (B.27)
n=0

To best illustrate how we determine the appropriate stretching function, (),
consider the leading-order terms in the original differential equation, viz.,

d*fy (6 df; oy
= ( ;’0) e 2 ( ) + fotpo = (—j _-‘ff,wl) (B.28)

First of all, we must consider the three possibilities for the order of magnitude of
#(8), viz, p > 1, u ~ 1 and p < 1. If > 1, inspection of Equation (B.28)
shows that fo = 0 which is not a useful solution. If 4 ~ 1, we have the outer
expansion. Thus, we conclude that ;1 < 1.

We are now faced with three additional possibilities: d¢o/u? > o/u;
Sipo [ ~ wg/p',, and 849/ p? < /. Using the boundary condition at s = 0,
assuming §vg/p? > tho/p yields fo = Ao where A is a constant of integration.
While this solution might be useful, we have learned nothing about the stretching
function, u(8). At the other extreme, dvp/u? < 1po/p, we obtain the trivial
solution, fo = 0, which doesn’t help us in our quest for a solution. The final
possibility, 80/ 2 ~ 1/, is known as the distinguished limit, and this is the
case we choose. Thus,

1(6) =6 (B.29)

Again, the most appropriate choice for the 1, (9) is
Yn(6) =" (B.30)

The following sequence of equations and boundary conditions define the inner
expansion.
d2 fU " % 3
do? = do
d2fi | dfs
—+ - = —fo
do?  do . (B.31)
d*fo _ df

@ Tde T ~h

4

fa(0) =0 foralln>0 (B.32)
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Solving the leading, or zeroth, order problem (n = 0) and the first order
problem (n = 1), we find

folo) = Ao(l—-¢77)
file) = (A1 — Aoeo) — (A1 + Ago)e™? (B.33)

where Ag and A, are constants of integration. These integration constants arise
because each of Equations (B.31) is of second order and we have used only one
boundary condition.

To complete the solution, we perform an operation known as matching. To
motivate the matching procedure, note that on the one hand, the boundary s = 1
is located at 0 = 1/d — oo as § — 0. Hence, we need a boundary condition
for Fipner(co;d) valid as ¢ — co. On the other hand, the independent variable
in the outer expansion is related to o by s = do. Thus, for any finite value of
o, the inner expansion lies very close to s = 0. We match these two asymptotic
expansions by requiring that

lim Finner(058) = lim Fouter(s; 6) (B.34)
O =30 85—

The general notion is that on the scale of the outer expansion, the inner expansion
is valid in an infinitesimally thin layer. Similarly, on the scale of the inner
expansion, the outer expansion is valid for a region infinitely distant from s = 0.
For the problem at hand,

lim fo(c) =Ap and lim Fy(s) = e (B.35)

g—0

Thus, we conclude that

Ao = € (B-36)

Equivalently, we can visualize the existence of an overlap region between
the inner and outer solutions. In the overlap region, we stretch the s coordinate
according to

*

A
= o §<v(d) <1 (B.37)

In terms of this intermediate variable, for any finite value of s*,

s—0 and o—o00 as  v(§)—0 (B.38)

Using this method, we can match to as high an order as we wish. For
example, matching to nt" order, we perform the following limit operation.

Tim I:Fénnerts"; FO‘L-,ter:| —0 (B39)

430
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For the problem at hand, the independent variables s and o become

R T - ”'(‘?S* (B.40)

Hence, replacing e~¥(9)$" by its Taylor-series expansion, we find
Fouter ~ € {1 — v(8)s* + 6 + O5u(3)]} (B.41)
Similarly, noting that e=(%)¢*/¢ is transcendentally small as § — 0, we have
Finner ~ Ap — Agu(8)s” + A18 + O(5%) (B.42)

Thus, holding s* constant,

inner — L outer A — 1-—- 6 ® —
lim Fi Fout 2 ( 0 6)( U( )8 ) = (Al 6)5 + 0(5) (B43)
8—0 ) )
Clearly, matching to zeroth and first orders can be achieved only if
Ag = A]_ = £ (B44)

In summary, the inner and outer expansions are given by
Fruter(si8) ~ €17 [1+ (1 — 5)8 + O(5?)]
Finner(g; 5) ~ £ {(1 — e‘“) + {(1 o U) = (1 + U)ema]é’—" 0(52)}
o=s/é
(B.45)
Finally, we can generate a single expansion, known as a composite expan-
sion, that can be used throughout the region 0 < s < 1. Recall that in the
matching operations above, we envisioned an overlap region. In constructing
a composite expansion, we note that the inner expansion is valid in the inner

region, the outer expansion is valid in the outer region, and both are valid in the
overlap region. Hence, we define

Fcomposite = F%nner‘ = Fouter - Fcp (B46)

where F., is the commen part, i.e., the part of the expansions that cancel in the
matching process. Again, for the case at hand, comparison of Equations (B.41)
and (B 42) with A, and A; given by Equation (B.44) shows that

Fegp~e[l+(1-0)6+0(6%) (B.47)

where we use the fact that v{§)s* = do. Hence, the composite expansion is

Feomposite ~ [e‘ g 5] & [(1 —8)e' T - (1+ 8/6)61“3/6] § + 0(8?)
(B.48)
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€ = 0.20

yix)

¥(x)

i) 1 i 1 1 Il 1 1

L
0 01 02 03 04 05 06 07 08 08 1.0

Figure B.2: Comparison of asymptotic expansions and the exact solution for the
sample boundary-value problem: o exact; — — — outer expansion; - - - - -- inner
expansion;, —— composite expansion.

What we have done is combine two non-uniformly valid expansions to achieve
a uniformly-valid appreximation to the exact solution. Retaining just the
zeroth-order term of the composite expansion yields an approximation to the
exact solution that is accurate to within 7% for ¢ as large as 0.2! This is actually
a bit fortuitous however, since the leading term in Equation (B.48) and the exact
solution differ by a transcendentally small term. Figure B.2 compares the two-
term inmer, outer and composite expansions with the exact solution for ¢ = 0.05
and € = 0.20.

For the obvious reason, perturbation analysis is often referred to as the theory
of matched asymptotic expansions. The discussion here, although sufficient
for our needs, is brief and covers only the bare essentials of the theory. For
additional information, see the books by Van Dyke (1975), Bender and Orszag
(1978), Kevorkian and Cole (1981), Nayfeh (1981) or Wilcox (1995a) on this
powerful mathematical theory.
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Problems

B.1 Consider the polynomial
2’ -z’ +8=0
(a) For nonzero § < 4/27 this equation has three real and unequal roots. Why is this
a singular-perturbation problem in the limit § — 07

(b) Use perturbation methods to solve for the first two terms in the expansions for the
roots.

B.2 Determine the first two terms in the asymptotic expansion for the roots of the following
polynomial valid as § — 0.
6z’ +2+248=0

B.3 Consider the following nonlinear, first-order initial-value problem.

dy 2
2 byt =0 0)=1
g Ty Ty ,  y(0)

Determine the exact solution and classify this problem as regular or singular in the limit
¢ — 0. Do the classification first for £ > 0 and then for ¢ < Q.

B.4 The following is an example of a perturbation problem that is singular because of
nonuniformity near a boundary. Consider the following first-order equation in the limit
€ — 0.

dy
30y _ 2 .
at o = ey y(1) =1

The solution is known to be finite on the closed interval 0 < x < 1.

(a) Solve for the first two terms in the outer expansion and show that the solution has
a singularity as z — 0.

(b) Show that there is a boundary layer near z = 0 whose thickness is of order /2.

(c) Solve for the first two terms of the inner expansion. Note that the algebra simplifies

if you do the zeroth-order matching before attempting to solve for the next term in
the expansion.

B.5 Generate the first two terms in a perturbation solution for the following initial-value
probiem valid as § — 0.

dy 2 .
i 2 U i —-2 r(‘}
— =y +2y, y(0) +5

B.6 Generate the first two terms of the inner and outer expansions for the following
boundary-value problem. Also, construct a composite expansion.

d*y | dy _

y(0)=0 and y(1) =€
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B.7 Generate the first two terms of the inner and outer expansions for the following
boundary-value problem. Also, construct a composite expansion.

2
6%+%=%m2, k1

y(0)=1 and y(1)=1/6

B.8 This problem demonstrates that the overlap region is not a layer in the same sense
as the boundary layer. Rather, its thickness depends upon how many terms we retain in
the matching process. Suppose we have solved a boundary-layer problem and the first
three terms of the inner and outer expansions valid as € — 0 are:

Youter(z3€) ~ 1 +ee™ + 2™ + O(E°)

Yinner (T;€) ~ A(1 — e_‘s) +eB(1 — e %) + (1 - 52) + 0(63)

where

Determine the coefficients A, B and C. Explain why the thickness of the overlap region,
v{e), must lic in the range
e'/? & vie) < el/4

as opposed to the normally assumed range et/? « vie) <« 1.



Appendix C

Companion Software

The companion CD supplied with this book contains a collection of computer
programs that can be used to develop and validate turbulence models. The CD
includes the following.

e FORTRAN source code
e Exccutable programs built with the Lahey Fortran-90 compiler

e Menu-driven Visual C++ input-data preparation programs that should func-
tion on all versions of the Microsoft Windows operating system

e Visual C++ plotting programs to display program output in graphical form
e Detailed technical and user information

The programs supplied on the companion CD fall into five categories...

1. Free Shear Flows: Programs JET, MIXER and WAKE solve for free-shear-
flow farfield behavior.

2. Channel and Pipe Flow: Program PIPE solves for two-dimensional channel
flow and axisymmetric pipe flow under fully-developed conditions.

3. Boundary-Layer Perturbation Analysis: Programs DEFECT and SUB-
LAY generate solutions for the classical defect layer and the viscous sublayer.

4. Boundary Layers: Program EDDYBL is a two-dimensional/axisymmetric
boundary-layer program applicable to compressible boundary layers under lami-
nar, transitional and turbulent flow conditions.

5. Separated Flows: Program EDDY2C is a two-dimensional/axisymmetric
Reynolds-Averaged Navier Stokes (RANS) program applicable to compressible
separated flows under laminar and turbulent flow conditions.

477
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The menu-driven input-data preparation programs inciude default input val-
ues that can be modified as needed. Additionally, for Programs EDDYBL and
EDDY2C, the companion CD includes input-data files for many of the test cases
discussed throughout this book. The documentation on the CD indicates the flow
each file corresponds to.

NOTE: If you discover any bugs in the software or errors in its docu-
mentation, please report what you have found by sending email through
DCW Industries’ Internet site at http://www.dcwindustries.com. As they
become available, revisions and/or corrections to the software will be down-
loadable from the site, so you might want to check for updates from time
to time.
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eddy viscosity, 312
liquid, 39
turbulence, 44, 304, 336-337
Anisotropy, 309, 317, 371, 441
Anisotropy tensor, 324, 328, 337-339
ASM (see Algebraic Stress Model)
Asymptotic consistency, 107, 188, 193-200,
205-209, 347, 351, 354, 360
Asymptotic expansion (defined), 466
Asymptotic sequence (defined), 466
Attractor:
Lorenz, 453
strange, 453-454
turbulence, 454-455
Autocorrelation, 46, 48, 132, 430, 454
Averaging:
ensemble, 34-35
Favre, 241-243, 295
phase, 38, 50, 358
Reyrolds, 34-38
spatial, 34-35
time, 34-35
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Axisymmetric flow, 60-61, 70, 84-89, 91, 93,
94, 141, 154-155, 187-189, 210,
211,218-219, 283-284,290-292,
320-321,350-351,356-357,365,
366, 370-371, 451

B

Backscatter, 442, 454
Backward-facing step, 120-122, 219, 224,
284, 311, 330, 361-365, 372,
436, 444, 452
Blending functions:
DES, 446-451
RANS, 152, 447
Blood flow, 224-227
Boundary conditions:
freestream, 147-150, 174-175, 395-399
“off-the-wall”, 442-444, 446
surface:
porous-wall, 186-187,207, 346-347
rough-wall, 182-185, 208, 346-347
slightly-rough-wall, 185, 385-386
smooth-wall, 175-177, 195-197,
344, 385-386
wall-function, 181-182, 277-278, 343,
344,418
Boundary-layer applications:
compressible:
flat-plate, 269-271, 355
nonadiabatic, 273, 355
rough-wall, 274
separated, 275-295, 366-371
variable-pressure, 271-273
incompressible:
curved-wall, 305-307, 354
flat-plate, 89-90, 98-99, 113-119,
189-192, 197, 212-213
mass transfer, 186-187
rough-wall, 19, 182-185
separated, 94-96, 100,106,120-121,
218-227, 235
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Boundary-layer applications (continued):
incompressible:
spinning-cylinder, 355-356
transitional, 214-218
unsteady, 356-360
variable-pressure, 19, 89-93, 98-99,
113-119,189-192,197-200, 212,
213
Boussinesq approximation (defined), 53
Bradshaw’s constant (defined), 112
Butterfly effect, 454

C

Cascading, 6, 8, 10, 12, 428, 441-442
CFL condition (defined), 405
CFL number {defined), 405
Channel flow, 84-89, 135, 187-188,210,348,
349, 432-434
rotating, 314, 351
skin-friction formula, 87
Chaos, 452-455
Clauser defect law, 17, 78, 157, 163
. Common part, 157, 473
Complete model, 24, 107, 113-115,122, 228
Completely-rough surface, 18, 29-30, 1384
Composite expansion (defined), 473
Convective Mach number (defined), 260
Convergence:
grid, 224, 278, 415-416, 433-434, 436
iteration, 414-415
Correlation (defined), 39
auto, 46, 48, 132, 430, 454
single-point, 45-46, 326
two-point, 44-49, 131, 326
Cross diffusion, 127, 136, 139, 147-153,173,
174, 218, 262, 354
Cross-term stress, 439
Curved-wall flow, 304-307, 309-310, 314,
332, 351, 354,373

D

Defect layer, 16-17, 19, 21, 74-76, 78, 135,
157, 159, 161-175, 180-181,
192, 198, 229, 231, 309, 348,
398, 420

Delayed Detached Eddy Simulation, 451

Delta formulation, 410

DES (see Detached Eddy Simulation)

Detached Eddy Simulation, 15, 427, 444-452

Dilatation dissipation, 251-253, 295

INDEX

Direct Numerical Simulation, 15, 86, 187,
206, 252, 324, 349, 364, 371,
431-445
Displacement thickness (defined), 270
Dissipating eddies, 8, 10, 47, 49, 124, 129,
200, 428, 432, 436
Dissipation (defined), 109
classical definition, 109
dilatation, 252
Favre-averaged, 247
solenoidal, 252
tensor, 323
Distinguished Limit, 471
Distortion parameter, 304-305, 340-341
DNS (see Direct Numerical Simulation)
Drastic surgery, 109, 129, 131, 330
Dynamic SGS model, 441
Dynamical system, 453-455

E

EASM (defined), 312
Echo effect (see Pressure-echo effect)
Eddy:
energy-bearing, 9-10, 12, 44, 46, 49,
125-126, 129, 428-430
large, 6, 9, 11, 13, 49, 125, 154, 253,
254,427-428,430,434, 436-445
shock, 252-254
smallest, 6, 8-11, 43-44, 48-49, 130,
154, 200, 427-432, 434, 436
stress-bearing, 129
tumover time, 430, 435
Eddy viscosity (defined), 57
Energy-bearing eddies, 9-10, 12, 44, 46, 49,
125-126, 129, 428-430
Energy spectral density, 11, 28, 430
Energy, turbulence kinetic (defined), 44
Enstrophy, 124-128, 146, 154-155, 230, 447
Entrainment, 389, 395, 421
Equilibrium parameter (defined), 19
Equilibrium turbulence, 59, 95, 112
Escudier defect law, 78

F

Far wake, 62-67, 136-153, 341, 387
spreading rate (defined), 116
Filter, 437-439
Fourier cuteff, 438
function, 437
Gaussian, 438
test, 441
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Filter {continued)
volume-average box, 437
width, 437
Flux Jacobian matrix (defined), 410
Fourier transform, 11, 430, 438
Fourier’s law, 244
Free-interaction concept, 285
Friction velocity (defined), 16

G

GCI (see Grid convergence index)
Gradient-diffusion, 23, 110, 112-113, 440
Grid convergence, 224, 278, 415-416, 413,
434, 436
index (GCI), 417-418
Grid independence (see Grid convergence)
Grid-refinement ratio, 417

H
Half-equation models, 96-100
Hung, 95, 97
Johnson-King, 91-101, 104-106, 112,
118, 172, 219

Shang-Hankey, 95
Heat-flux vector:
laminar, 244
turbulent, 250
Heat transfer, 94, 96, 214, 217, 240, 250,
269-273,277,290-295,298,305,
370-371, 379, 445, 453
Homogeneous turbulence, 35, 136, 251-253,
326, 333-341
anisotropic, 336-337
isotropic, 48, 52, 133-134, 230, 327,
328, 334-335, 439
rotating, 309
sheared, 338-339, 376
strained, 338, 340
Hydraulically-smooth surface, 29

I

Incomplete:
model, 24, 53, 66, 100-10i, 107, 227
similarity, 21
Inertial subrange, 12-14, 49, 431, 440-441
Inhomogencous turbulence, 251, 326
Inner expansion (defined), 470
Integral constraint, 62-66, 70, 102, 165-166,
169, 173, 231
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Integral scale:
length, 12, 44, 48, 131, 429
time, 46, 132

Intermittency, 78

Invariant modeling, 323

Isotropy, local, 323

J

Jet:
plane, 70-74, 116, 136-155, 341-342
radial, 116, 136-155, 154, 341
round, 70-74, 116, 136-155, 341-342
spreading rate (defined), 72

K

Kérman’s constant (defined), 16

Klebanoff intermittency function, 78, 80-82
Knudsen number (defined), 56
Kolmogorov -5/3 law, 11-15, 49, 431
Kolmogorov scales (defined), 10

Kurtosis, 259

L

Lag model, 320-321
Large Eddy Simulation, 15, 38, 135-136,309,
427, 436-445
Law of the wake (defined), 19
Law of the wall:
classical, 15-20
completely-rough surface, 18
compressible, 241, 262-269
curved-wall, 307
with suction, 103
Leonard stress, 439
LES (see Large Eddy Simulation)
Local isotropy, 323, 429
Locally homogeneous, 327
Log layer, 74-76, 78, 80-81, 134, 156-162,
176,239,262, 269-270,307,343

M

Mass transfer, 186-187, 207, 346-347
Matching (defined), 472
Mean free path, 11, 53, 55-57
Microscale:

Reynolds number, 430

Taylor, 48-49, 429, 448
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Mixing layer, 67-69, 116, 136-153, 341

compressible, 240, 253.254, 257-261,

269, 298, 378

curved, 342

spreading rate (defined), 69
Mixing-length hypothesis, 23, 53, 57-59
Momentum-integral equation, 91, 165
Morkovin’'s hypothesis, 240, 295

N

Navier-Stokes equation:
Favre-averaged, 245
filtered, 439
Reynolds-averaged, 40
Navier-Stokes operator, 41, 129, 230
Nonstationary turbulence, 38

O

Oldroyd derivative, 309-310
One-equation models, 111-122
Baldwin-Barth, 26, 113-116, 118-121,
171-172, 175, 218-219, 228,
234, 299
Bradshaw-Ferriss-Atwell, 26, 112-113
134, 281
Goldberg, 26, 112
Menter, 26, 113
Nee-Kovasznay, 113
Prandtl-Emmons-Glushko, 23, 108-
113, 441
Sekundov, 26, 113
Spalart-Allmaras, 26, 113-121, 172,
175,182,218-219,228, 234.236,
279, 284, 296, 299, 321, 365,
389
Outer expansion (defined), 469
Overlap region (defined), 472

£l

P

Perfect-gas law, 243
Permutation tensor (defined), 462
Phase-space portrait, 337-338
Pipe flow, 84-89, 187-189,210-211, 348-350
skin friction formula, 89
Pope’s jet modification, 127, 154-155, 342
Power law:
velocity, 20-22
viscosity, 269

INDEX

Prandtl number:
laminar, 240, 244, 453
turbulent, 240, 250, 355
Predictability, 435, 454
horizon, 454
time, 454
Pressure diffusion, 109-110, 253.254, 295,
325
Pressure dilatation, 247, 253-254, 258, 295
Pressure-echo effect, 328, 330, 333-334,348,
349
Pressure-strain correlation, 312, 323, 325-
334, 336, 342, 361-362, 372
rapid (defined), 326
slow (defined), 326
Pressure-strain redistribution:
(see Pressure-strain correlation)
Pressure work, 247, 254, 295
Production (defined), 109
Pseudo-spectral method, 436

R

RANS (see Navier-Stokes equation, Reynolds
averaged)
Rapid pressure strain:
(see Pressure-strain correlation)
Rapid pressure-strain models:
Launder-Reece-Rodi, 328
Lumley, 329
Speziale-Sarkar-Gatski, 329
Realizability, 280, 310, 323, 329
Realization, 435
Resolvable scale, 438-439
Return to isotropy, 304, 310, 313, 327, 337
Reynolds’ analogy, 250
Reynolds-stress (defined), 40
anisotropy tensor, 324
equation, 43, 248
tensor invariants, 329
Richardson extrapolation, 416-417
Richardson number, 307
Rodi’s ASM approximation, 312
Rossby number, 352
Rotating channel flow, 314, 351
Rotation tensor (defined), 127
Roughness:
completely-rough surface, 18
strip, numerical, 216
Round-jet/plane-jet anomaly, 136, 154-155,
341-342
Rubel-Meinik transformation, 384, 389-390,
398, 421
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S

Second-moment closure models:
(see Stress-transport models)
Second-order closure models:
(see Stress-transport models)
Second viscosity:
eddy, 250
molecular, 243
Secondary motion, 229, 304, 308, 311, 313,
317, 322, 354,372
Self preserving (defined), 60
Self similar (see Self preserving)
SGS (see Subgrid-scale)
SGS Reynolds stress, 439
Similarity-solution method, 63-66
existence conditions, 64-65
Single-point correlation, 45-46, 326
Singular-perturbation problem:
(defined), 467
Slightly-rough surface, 185, 346, 385
Slow pressure strain:
(see Pressure-strain correlation)
Smagormsky model, 440-442, 448
Specific dissipation (defined), 124-126
Spectral method, 434, 436, 438
Spinning, segmented cylinder, 355-356
Spreading rate (defined):
far wake, 116
jet, 72
mixing layer, 69
Stability:
analysis, 404-408
comnditional, 405
unconditional, 402, 406
Stanford Olympics:
First, 91
Second, 91
Stationary turbulence, 34, 36, 38, 46, 48
Stiffness, 343, 381-383, 415
Strain-rate tensor (defined), 127
Strange attractor, 453-454
Stratification, 308, 322
Streamline curvature, 24, 80, 161, 304-307,
314, 317, 322, 342, 354

Stress limiter, 127, 136, 139, 152-153, 160,
218, 221-223, 280-282, 309,
317-320

Stress-transport models, 322-334

Daly-Harlow, 26, 327

Daonaldson, 26, 323-324, 327

Fu-Launder-Tselepidakis, 330, 338

Gibson-Launder, 328, 352

513

Gibson-Younis, 361-362
Hanjali¢-Jakirli¢-Hadzic, 354
Launder-Reece-Rodi, 26, 325, 329-
342, 344, 348-349, 351, 354,
361-362, 376-377
LRR (see Launder-Reece-Rodi)
Mellor-Herring, 324
Shih-Lumley, 330
Wilcox multiscale, 332, 338, 340, 356,
359-360
Wilcox-Rubesin, 323, 332, 356-357
Wilcox Stress-w, 332-342, 344-347,
349-356,363,365-367,370-372,
376-379, 384-385
Subgrid scale, 437-436, 441
Sublayer, viscous (see Viscous sublayer)
Subrange, inertial, 12-14, 49, 431, 440-441
Surface mass transfer, 186-187, 207, 346-347
Surface roughness, 19, 182-185, 274

T

Taylor microscaie, 48-49, 429, 448
Term-by-term modeling (see Drastic surgery)
Thermal conductivity, 244
Townsend’s constant (defined), 112
Transcendentally small (defined), 466
Transonic, 283-284, 321, 365-366
TST (see Transcendentally small)
Turbulence kinetic energy (defined), 44
Turbulence Mach number, 252, 254, 261
Turbulence Reynolds number (defined), 194,
204
Turbulent front, 148-150, 152, 391
Turbulent/nonturbulent interface, 67, 69,
135, 142, 152, 170, 387-399,
416, 421
Turbulent transport, 58, 61, 109-110, 113,
245, 247, 250-251, 253, 311,
324-325, 331
Two-equation models, 122-229
k-€:
Chien, 193-199,236, 267-268,271-
273, 361-362, 386, 403
Durbin, 193
Dutoya-Michard, 193
Fan-Lakshminarayana-Barett, 194,
196, 403
Hassid-Poreh, 193, 196
Hoffmann, 193
Hwang-Lin, 194
Jones-Launder, 128, 193-194,196,
198-199,209,234,273, 399,403
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Lam-Bremhorst, 193-199, 209, 236,
386, 403
Launder-Sharma, 26, 128-130, 132,
133, 136, 138-139, 143-145,
147-148,150-152, 154, 160-161,
167-168,170-174,177-178,181,
182, 187, 189-200, 208-209,
218-220,224-231, 236,265-270,
273, 278, 291-292, 296-299,
330-331,341-342,352,354-355,
403
Myong-Kasagi, 193
Rahman-Siikonen, 194
Reynolds, 193
RNG, 130, 142-145, 161, 169-171,
173, 279, 298
Rodi, 292, 294
Shih-Hsu, 193
Speziale-Abid-Anderson, 193
Standard (Launder-Sharma}
Yang-Shih, 194, 236, 403
Zhang-So-Speziale-Lai, 194, 269,
273
k-k€:
Ng-Spalding, 131
Rodi-Spalding, 131
Rotta, 123
Smith, 131
Vollmers-Rotta, 389
k-kr:
Zeierman-Wolfshtein, 123, 132,
135
k-¢:
Benay-Servel, 131
Rotta, 123
Smith, 131
k-T:
Speziale-Abid-Anderson, 132, 177,
178
k-w:
Durbin, 280, 293
Hellsten, 26, 124, 126, 151, 392,
393
Kok, 26, 124, 126, 146, 151, 231,
392
Kolmogorov, 24, 26, 122, 124-126,
129, 133, 177
Menter, 26, 124, 219, 279-280, 283,
284, 288, 296, 321
Moore-Moore, 295
Peng-Davidson-Hoklmberg, 124,
126, 146, 151
Speziale-Abid-Anderson, 124, 126
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Wilcox (1988), 26, 124, 126, 128,
146-149, 152, 154, 173, 177,
178, 186, 218-220, 268, 282,
283, 291, 293, 295, 321, 340,
360, 393-395

Wilcox (1998), 26, 198-199, 317,
333-334, 344, 346, 354, 373,
385

Wilcox (2006), 124-128, 133, 135,
137, 139-140, 143-145, 147,
154-155,159-161,167-168, 170-
179, 181-182, 186-192, 198,
200,218-222,227-236,255-274,
277-278,283-290, 296-299, 306,
341,355-356,363-367,370-371,
384, 392-393

k-w?:

Saffiman, 26, 124, 129, 135, 176-
177, 389, 397

Saffman-Wilcox, 26, 124, 263, 276,
281

Spalding, 124, 126, 177-178

Wilcox-Alber, 26, 124, 126, 254

Wilcox-Rubesin, 26, 124-126, 177,
196-197,205,304, 309, 356-357,
401

Wilcox-Traci, 26, 124

k2. and k-C:

Coakley, 124

Robinson-Harris-Hassan, 124, 126,
128, 146, 154-1535, 447

Two-phase flow, 445
Two-point correlation, 44-49, 131, 326

U

Universal equilibrium theory, 10, 12
Unsteady flow, 37, 356-360, 403, 408

v

Van Driest damping function {defined), 77

Velocity thickness (defined), 80

Viscous-interface layer, 397-398, 423

Viscous sublayer, 16, 26, 28-29, 74-76, 78,
103, 125, 152, 157, 161, 166,
175-178,180-181, 183-184, 186,
187, 192, 198, 200, 206, 212,
218, 228-229, 232, 343-347,
360,383-385,419-420,428, 442

von Neumann stability analysis:

(see Stability, analysis)
Vortex stretching, 6-7, 135, 140, 154, 342



INDEX

W

Wake (see Far wake)
Wake-strength parameter, 19, 169-171, 450
Wall functions, 181-182, 277-278, 343-344,
418
Wall-reflection effect:
(see Pressure-echo effect)
Wavenumber (defined), 11
Weak solution, 387-394
WKB method, 264, 297

Y
Yap correction, 174

Z

Zero-equation models (see Algebraic models)
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Has the time arrived to select a new
introductory fluid mechanics text?

If it is, you should know that DCW Industries has published a
book that deserves your consideration.

ISBN 1-928729-17-7, 570 pages



OTHER DCW INDUSTRIES BOOKS 517

Elements of Fluid Mechanics (2005) is designed to counter the modem trend
away from an emphasis on fundamentals. With the revived interest in acronautics
spurred by both private enterprise and government to expand mankind’s travel
in and exploration of space, a return to rigor is overdue in universities. This
text has been written in that spirit and will challenge the reader’s intellect and
encourage aiming for excellence. If you're a teacher, this text will help you
lay the foundation for your students to be tomorrow’s innovators. If you're
a practicing engineer and you want to firm up your knowledge of the basic
principles of fluid mechanics, this book is exactly what you’ve been looking for.

Scope: Based on Dr. Wilcox’s 25+ years of experience teaching introductory
fluid mechanics, this book is suitable for a one-semester introduction to fluid
mechanics. The primary focus is on the control-volume approach with minimal
focus on the differential equations of fluid motion. The text maintains rigor
while using only the most basic elements of vector calculus. Topics covered are
as follows.

¢ Thorough development of the control-volume approach

e Dimensional analysis

e Fluid statics

e Open-channel flow

¢ Pipe flow, including pipe systems

» Elements of flow through turbomachines

® One-dimensional compressible flow including Fanno and Rayleigh flow
e Elements of potential-flow theory

e Introduction to boundary-layer theory
Companion CD: The book includes a CD with fluid-mechanics pictures and
movies illustrating basic fluid physics.

Solutions Manual: The 1285-page manual is typeset in BIRX, and is supplied
on CD without charge to schools that have adopted the book.

Lecture Notes: The Solutions Manual CD includes a complete set of lecture
notes in Microsoft Power Point format.
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Has the time arrived to select a new
intermediate fluid mechanics text?

If it is, you should know that DCW Industries has published a
book that deserves your consideration.

ISBN 1-928729-03-7, 786 pages
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Basic Fluid Mechanics (2003) is designed to counter the modern trend away
from an emphasis on fundamentals. With the revived interest in aeronautics
spurred by both private enterprise and government to expand mankind’s travel
in and exploration of space, a return to rigor is overdue in universities. This
text has been written in that spirit and will challenge the rcader’s intellect and
encourage aiming for excellence. If you're a teacher, this text will help you
lay the foundation for your students to be tomorrow’s innovators. If you're
a practicing engineer and you want to firm up your knowledge of the basic
principles of fluid mechanics, this book is exactly what you’ve been looking for.

Scope: Based on Dr. Wilcox’s 25+ years of experience teaching introductory and
intermediate fluid mechanics, this book is suitable for a two-semester sequence
of fluid-mechanics courses. The first 10 chapters of the text include:

e Thorough development of the control-volume approach
¢ Dimensional analysis

Fluid statics and open-channel flow

L ]

Pipe flow, including pipe systems

Elements of flow through turbomachines

e One-dimensional compressible flow
Chapters 11-15 cover the differential equations of fluid motion, including;
e Potential-flow theory
e Detailed development of the Navier-Stokes equation
e Exact Navier-Stokes solutions
¢ Boundary-layer theory including an introduction to turbulent flow
¢ Prandtl-Meyer expansion and oblique shocks, Fanno and Rayleigh flow

e CFD concepts integrated throughout

Companion CD: The book includes a CD with useful engineering software, and
fluid-mechanics pictures and movies illustrating basic fluid physics.

Solutions Manual: The 1512-page manual is typeset in BTgX, and is supplied
on CD without charge to schools that have adopted the book.

Lecture Notes: The Solutions Manual CD includes a complete set of lecture
notes 1n Microsoft Power Point format.
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Has the time arrived to select a new
perturbation methods text?

If it is, you should know that DCW Industries has published a
book that deserves your consideration.

ISBN 0-9636051-2-7, 224 pages

Perturbation Methods in the Computer Age (1995) is an advanced under-
graduate or first-year graduate text on asymptotic and perturbation methods. It
discusses asymptotic expansion of integrals, including Laplace’s method, sta-
tionary phase and steepest descent. The book introduces the general principles
of singular-perturbation theory, with examples for ODE’s and PDE’s. It cov-
ers multiple-scale analysis, including the method of averaging and the WKB
method. Through a collection of practical examples, the text shows how useful
asymptotics can be when used in conjunction with computational methods.

Solutions Manual: The 164-page manual is typeset in BIgX, and is available
on CD from DCW Industries, Inc.
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Would you like to understand some
of the mystery surrounding entropy
and the science of thermodynamics?

If it is, you should know that DCW Industries has published a
book that deserves your consideration.

The Low-Down
on Entropy
and
Interpretive
Thermodynamics

ISBN 1-928729-01-0, 120 pages

The Low-Down on Entropy and Interpretive Thermodynamics (1999) is the
final book written by Professor Stephen Kline of Stanford University. It is a
delightful treatisc on the subtleties of entropy and the second law of thermody-
namics.
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For other educational books,
please visit DCW Industries’
Home Page . . .
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5354 Palm Drive, La Canada, CA 91011
http://www.dcwindustries.com

NOTE: We have taken great pains to assure the accuracy of this manuscript.
However, if you find errors, please report them to DCW Industries’ Home
Page on the Worldwide Web at http://dcwindustries.com. As long as
we maintain a WWW page, we will provide an updated list of known
typographical errors.




